RM6 24 kV

Ring Main Unit

Catalogue 2009

A new path for achieving your electrical installations

A comprehensive offer

The RM6 range is part of a comprehensive offer of products that are perfectly coordinated to meet all medium and low voltage electrical distribution requirements.
All of these products have been designed to work together: electrical, mechanical and communication compatibility.
The electrical installation is thus both optimised and has improved performance:

- better service continuity,
- increased personnel and equipment safety,
- guaranteed upgradeability,
- efficient monitoring and control.

You therefore have all the advantages at hand in terms of know-how and creativity for achieving optimised, safe, upgradeable and compliant installations.

Tools for facilitating the design and installation

With Schneider Electric, you have a complete range of tools to help you get to know and install the products whilst complying with current standards and good working practices. These tools, technical sheets and guides, design software, training courses, etc are regularly updated.

Schneider Electric is associating itself with your know-how and your creativity to produce optimised, safe, upgradeable and compliant installations

For a real partnership with you

A universal solution doesn't exist because each electrical installation is specific. The variety of combinations on offer allows you to truly customise the technical solutions. You are able to express your creativity and put your know-how to best advantage when designing, manufacturing and exploiting an electrical installation.

Contents

Presentation
Applications 2
Range advantages 4
Experience of a world leader 6
Protecting the environment 7
Quality - Standards 8
The RM6 range
RM6 switchgear description 9
Safety of people 10
RM6 for marine application - NEW FEATURE 2009 12
A wide choice of functions 13
Unit characteristics
Main characteristics 14
Detailed characteristics for each function 15
Medium voltage metering 23
Line and transformer protection by a circuit breaker VIP 300 24
VIP 30, VIP 35 26
Sepam series 10 - NEW FEATURE 2009 27
Selection guide for circuit breaker protection 28
Transformer protection by fuse-switches 29
Network remote control
Architecture and SCADA L500 30
Easergy T200 I control unit 31
Automatic transfer system - NEW FEATURE 2009 32
Switch and circuit breaker motorization 34
Accessories
Indication and tripping 35
Fault current and load current indicators 36
Voltage presence indicator 37
Key locking 38
MV connection
Selecting bushings and connectors 39
Connection proposed in the offer 40
Other types of compatible connections 41
Installation
Dimensions and installation conditions 43
Civil works 47
Order form
Available functions 48
Basic unit and options 49
Options and accessories 50

The RM6 can be adapted to meet all Medium Voltage power distribution needs, up to 24 kV .

The RM6 is a compact unit combining all MV functional units to enable connection, supply and protection of one or two transformers on an open ring or radial network:

- by a fuse-switch combination, up to 2000 kVA

■ by a circuit breaker with protection unit, up to $\mathbf{3 0 0 0}$ kVA.
The switchgear and busbars are enclosed in a gas-tight chamber, filled with SF6 and sealed for life.

HV/MV substation

A complete range, enabling you to equip MV network points, and enhance electrical power dependability.

Operating a distribution network sometimes requires switching points in addition to the HV/MV substations, in order to limit the effect of a fault on the network.
The RM6 offers a choice of solutions to make 2, 3 or 4 directional connections
■ with line protection by 630 A circuit breakers
■ with network switching by switch disconnectors
■ with integrated power supply telecontrol devices.

Choosing RM6 offers you the experience of a world leader in the field of Ring Main Units.

The choice for your peace mind

The new RM6 generation benefits from the accumulated experience acquired from the 1,000,000 functional units that equip electrical networks in more than 50 countries in Africa, America, Asia, Europe and Australasia.
With 20 local production units around the world, Schneider Electric offer products can be made available to you in the shortest possible time.

Ring Main Unit, long experience

1983: marketing launch of the first RM6 compact with integrated insulation.
1987: creation of the circuit breaker version, with integrated protection unit needing no auxiliary power supply.
1990: creation of the RM6 1 functional unit.
1994: creation of the Network Point, integrating the RM6 and telecontrol.
1998: creation of the 630 A line protection integrated relay circuit breaker and launch of an RM6 range that is extensible on site.
2007: creation of the MV metering offer and associated functions (metering module, busbar coupling module, cable connection module).

Advantages of a proven design

RM6 switchgear

■ Ensures personal safety:

- internal arc withstand in conformity with IEC 62271-200
\square visible earthing
- 3 position switchgear for natural interlocking
\square dependable position indicating devices.
■ Is insensitive to the environment:
- stainless steel sealed tank
\square disconnectable, sealed, metallized fuse chambers.

- Is of approved quality:

- conforms to national and international standards
\square design and production are certified to ISO 9000 (version 2000)
\square benefits from the experience accumulated from 1,000,000 functional units installed world-wide.
- Respects the environment:
\square end-of-life gas recovery possible
- ISO 14001 approved production site.
- Is simple and rapid to install:
\square front cable connections at the same height
\square easily fixed to the floor with 4 bolts.

■ Is economical

- from 1 to 4 functional units, integrated within the same metal enclosure for which insulation and breaking take place in SF6 gas
- lifetime of 30 years.
- Has maintenance free live parts:
- in conformity with IEC 62271-1, pressure system, sealed for life.

Range advantages (cont.)

Compact and scalable, the RM6 range covers all of your requirements

Compact

RM6 Medium Voltage switchgear cubicles are perfectly suited for very simple configuration of 1 to 4 functions.
■ Choice of "all in one" units integrated in a single metal enclosure

- Cubicles insensitive to climatic conditions
- Optimized dimensions
- Quick installation through floor fixing with four bolts and front cable connection.

Extensible

Just as compact and insensitive to climatic conditions the extensible RM6 is modular to suit your requirements.
The addition of functional unit modules, allows you to build the Medium Voltage switchboard suited to your requirements.

Your organization develops, you build a new building - RM6 adapts with you. It can be extended on site without handling gases or requiring any special floor preparation to develop your installation simply and in complete safety.

Circuit breakers, for greater safety and lower costs

The RM6 range offers 200 A and 630 A circuit breakers to protect both transformers and lines. They are associated with independent protection relays that are selfpowered via current sensors or with auxiliary supply protection relays.
■ Greater operating staff safety and improved continuity of service \square increased protection device co-ordination with the source substation, circuit breaker and the LV fuses
\square rated current is normally high, allowing use of a circuit breaker to provide disconnection
\square the isolating system is insensitive to the environment.

- Simplified switching operations and remote control
- Reduction of losses
thanks to the low value of RI2 (the fuse-switches of a 1000 kVA transformer feeder can dissipate 100 W).

■ Reduced maintenance costs
no work in progress to replace fuses.

RM6, a world-wide product

Main references

Asia/Middle East	■ EDF, French Guiana
■ BSED, Bahrein	■ Tahiti Electricity
- DEWA, Dubaï	■ Métro de Mexico, Mexico
- WED, Abu Dhabi	
- Tianjin Taifeng Industrial Park, China	Europe
- TNB, Malaysia	■ EDF, France
■ China Steel Corporation, Taiwan	- Channel tunnel, France
- TPC, Taiwan	- Iberdrola, Spain
- SCECO/SEC, Saudi Arabia	■ Compagnie Vaudoise d'électricité
- PSB, China	SEIC, Switzerland Electrabel, Belgium
Africa	■ Union Fenosa, Spain
- Electricité de Mayotte	■ ENHER, Spain
- EDF Reunion	- Oslo Energie, Norway
- Total, Libya	- STOEN, Poland
- SONEL, Cameroon	■ Bayernwerke, Germany
- South Africa	■ London Electricity, United Kingdom ■ Mosenergo, Russia
South America/Pacific	
■ CELESC, Santa Catarina, Brazil	Australasia
- PETROBRAS, Rio de Janeiro, Brazil	■ Eau et Electricité de Calédonie
- Guarulhos International Airport	- New-Caledonia
- Sao Paulo, Brazil	■ Enercal, New-Caledonia
- CEMIG, Minas Gerais, Brazil	■ United Energy, Australia

The Schneider Electric's recycling procedure

The Schneider Electric's recycling procedure for SF6 based products is subject to rigorous management, and allows each device to be traced through to its final destruction documentation.

Schneider Electric is committed to a long term environmental approach. As part of this, the RM6 range has been designed to be environmentally friendly, notably in terms of the product's recycleability.
The materials used, both conductors and insulators, are identified and easily separable.
At the end of its life, RM6 can be processed, recycled and its materials recovered in conformity with the draft European regulations on the end-of-life of electronic and electrical products, and in particular without any gas being released to the atmosphere nor any polluting fluids being discharged.

The environmental management system adopted by Schneider Electric production sites that produce the RM6 have been assessed and judged to be in conformity with requirements in the ISO 14001 standard.

IEC standards

RM6 is designed in accordance with the following standards:

General operation conditions for indoor switchgears

IEC 62271-1 (common specifications for high voltage switchgear and controlgear)

- Ambient temperature: class $-25^{\circ} \mathrm{C}$ indoor
\square lower than or equal to $40^{\circ} \mathrm{C}$ without derating
- lower than or equal to $35^{\circ} \mathrm{C}$ on 24 hours average without derating
\square greater than or equal to $-25^{\circ} \mathrm{C}$.
- Altitude :
- lower than or equal to 1000 m
- above 1000 m , and up to 2000 m with directed field connectors
- greater than 2000 m : please consult us for specific precaution.

IEC 62271-200 (A.C. metal enclosed switchgear and controlgear for rated voltage above 1 kV and up to 52 kV)
■ Switchgear classification: PM class (metallic partitioning)

- Loss of service continuity: LSC2B class for circuit breaker and switch
(LSC2A for fuse-switch combinations)
- Internal arc classification: class AF AL up to 20 kA 1 s on request
(access restricted to authorized personnel only, for front and lateral access).

Switch disconnectors

IEC 60265-1 (high voltage switches for rated voltage above 1 kV and up to 52 kV)

- Class M1/E3
- 100 CO cycles at rated current and 0.7 p.f.
- 1000 mechanical opening operations.

Circuit breakers: 200 A feeder or 630 A line protection
IEC 62271-100 (high voltage alternating current circuit breakers)
■ Class M1/E2

- 2000 mechanical opening operations,

ㅁ O-3 min.-CO-3 min.-CO cycle at rated short circuit current.

Other applicable standards

- Switch-fuse combinations: IEC 62271-105:
alternating current switch-fuse combination
■ Earthing switch: IEC 62271-102:
alternating current disconnectors and earthing switches
■ Electrical relays: IEC 60255.

A major plus point

Schneider Electric has integrated a functional organization into each of its units, the main purpose of which is to check quality and ensure the adherence to standards. This procedure is:

- the same throughout the different departments
- recognized by numerous approved customers and organizations.

Above all, it is our strict application of this functional organization that has enabled us to obtain the recognition of an independent organization, the French Association for Quality Assurance (Association Française pour l'Assurance Qualité, or (AFAQ).
The RM6 design and production quality system has been certified as being in conformity with the requirements of the ISO 9001: 2000 quality assurance model.

Rigorous, systematic checks

During the manufacture of each RM6, it undergoes systematic routine tests, the aim of which is to check quality and conformity:

- tightness check
- filling pressure check
- opening and closing speed measurement
- operating torque measurement
- partial discharge check
- dielectric check
- conformity with drawings and diagrams.

The quality control department records and signs the results obtained on the test certificate for each device.

RM6 switchgear comprises 1 to 4 integrated, low dimension functional units. This self-contained, totally insulated unit comprises:
■ a stainless steel, gas-tight metal enclosure, sealed for life, which groups together the live parts, switch-disconnector, earthing switch, fuse switch or the circuit breaker - one to four cable compartments with interfaces for connection to the network or to the transformer

- a low voltage cabinet

■ an electrical operating mechanism cabinet

- a fuse chamber compartment for fused switch-disconnectors or fuse switches.

The performance characteristics obtained by the RM6 meet the definition of a "sealed pressure system" laid down in the IEC recommendations.
The switch-disconnector and the earthing switch offer the operator all necessary usage guarantees:

Tightness

The enclosure is filled with SF6 at a 0.2 bar gauge pressure. It is sealed for life after filling. Its tightness, which is systematically checked at the factory, gives the switchgear an expected lifetime of 30 years. No maintenance of live parts is necessary with the RM6 breaking.

Switch disconnector

Electrical arc extinction is obtained using the SF6 puffer technique.

Circuit breaker

Electrical arc extinction is obtained using the rotating arc technique plus SF6 auto-expansion, allowing breaking of all currents up to the short-circuit current.

A range that is extensible on site

When harsh climatic conditions or environmental restrictions make it necessary to use compact switchgear, but the foreseeable evolution of the power distribution network makes it necessary to provide for future changes, RM6 offers a range of extensible switchgear.
The addition of one or more functional units can be carried out by simply adding modules that are connected to each other at busbar level by directed field bushings. This very simple operation can be carried out on-site:

- without handling any gas
- without any special tooling

■ without any particular preparation of the floor.
The only technical limitation to the evolution of an extensible RM6 switchboard is therefore the rated current acceptable by the busbar: 630 A at $40^{\circ} \mathrm{C}$.

Insensitivity to the environment

Complete insulation

- A metal enclosure made of stainless steel, which is unpainted and gas-tight (IP67), contains the live parts of the switchgear and the busbars.
- Three sealed fuse chambers, which are disconnectable and metallized on the outside, insulate the fuses from dust, humidity..
- Metallization of the fuse chambers and directed field terminal connectors confines the electrical field in the solid insulation.
Taken together, the above elements provide the RM6 with genuine total insulation which makes the switchgear completely insensitive to environmental conditions, dust, extreme humidity, temporary soaking.
(IP67: immersion for 30 minutes, as laid down in IEC standard 60529, § 14.2.7).

3 stable position switch

Switchgear

Switch-disconnectors and circuit breakers have similar architecture:
■ a moving contact assembly with 3 stable positions (closed, open and earthed) moves vertically (see sketch). Its design makes simultaneous closing of the switch or circuit breaker and the earthing switch impossible.

- the earthing switch has a short-circuit making capacity, as required
by the standards.
■ the RM6 combines both the isolating and interrupting function.
- the earth collector has the correct dimensions for the network.
- access to the cable compartment can be interlocked with the earthing switch and/ or the switch or circuit breaker.

Reliable operating mechanisms

The electrical and mechanical operating mechanisms are located behind a front plate displaying the mimic diagram of the switchgear status (closed, open, earthed): ■ closing: the moving contact assembly is manipulated by means of a fast-acting operating mechanism. Outside these manipulations, no energy is stored.
For the circuit breaker and the fuse-switch combination, the opening mechanism is charged in the same movement as the closing of the contacts.
■ opening: opening of the switch is carried out using the same fast-acting mechanism, manipulated in the opposite direction.
For the circuit breaker and fuse-switch combination, opening is actuated by: - a pushbutton
\square a fault.
■ earthing: a specific operating shaft closes and opens the earthing contacts. The hole providing access to the shaft is blocked by a cover which can be opened if the switch or circuit breaker is open, and remains locked when it is closed.
■ switchgear status indicators: are placed directly on the moving contact assembly operating shafts. They give a definite indication of the position of the switchgear (attachment A of IEC standard 62271-102).

- operating lever: this is designed with an anti-reflex device which prevents any attempt to immediately reopen the switch-disconnector or the earthing switch after closing.
■ padlocking facilities: 1 to 3 padlocks can be used to prevent:
\square access to the switch or circuit breaker operating shaft
\square access to the earthing switch operating shaft
- operation of the opening pushbutton.

Earthing display

■ Earthing switch closed position indicators: these are located on the upper part of the RM6. They can be seen through the transparent earthing covers, when the earthing switch is closed.

Internal arc withstand

The robust, reliable and environmentally insensitive design of the RM6 makes it highly improbable that a fault will appear inside the switchgear.
Nevertheless, in order to ensure maximum personal safety, the RM6 is designed to withstand an internal arc supplied by a rated short-circuit current for 1 second, without any danger to the operator.
Accidental overpressure due to an internal arc is limited by the opening of the safety valve, at the bottom of the metal enclosure.
The gas is released to the rear or to the bottom of the RM6 without affecting conditions in the front. After type testing carried out for 16 kA 1 s and 20 kA 1 s , the device meets all the criteria of IAC class AF AL, as defined by IEC 62271-200 standard, appendix A.

Operating safety

Cable insulation test

In order to test cable insulation or look for faults, it is possible to inject a direct current of up to 42 kVdc for 15 minutes through the cables via the RM6, without disconnecting the connecting devices.
The earthing switch is closed and the moving earthing connection is opened in order to inject the voltage via the "earthing covers". This system, a built-in feature of the RM6, requires the use of injection fingers (supplied as an option).

Voltage indicator lamps

A device (supplied as an option) on all functional units makes it possible to check the presence (or absence) of voltage in the cables.
Two types of indicator can be proposed according to network operating habits: ■ a device with built-lamps, of the VPIS type (Voltage Presence Indicating System) complying with standard IEC 61958.

■ or a system with separate luminous modules, of the VDS type (Voltage Detection System) complying with standard IEC 61243-5.

INTERNATIONAL ASSOCIATION OF CLASSIFICATION SOCIETIES LTD.

MV loop configuration

Radial configuration

Safety for personal

■ If RM6 is equipped with special "filter" LRU (internaL arc Reduction Unit), internal arc classification is AFLR 20 kA 1 s defined in the standard IEC 62271-200.

Resistance to vibrations

■ Conform to IACS marine standards

- RM6 has a very low centre of gravity.

Resistance to hash environment

■ Resist to agressive atmosphere.

Some Marine references

- Aker Yards:
\square NCL Cruise Liner,
\square Genesis 1 \& 2 .
- Meyer Werft:
\square Aïda ships,
- Norvegian Gem,
- Norvegian Pearl,
- Pride of Hawaï, Norvegian Jewel,
\square Jewel of the seas...

Benefits of the MV loop adapted to the boat

A MV loop configuration offers significant advantages:
■ main MV switchboard smaller (only two cells to feed a MV loop)

- length of MV cables reduced (shortening average ratio > 30\% for the configuration)
- the maintainability and availability of the network are also improved.

Actually:

- a failed cable section on the MV loop can be disconnected

■ an automatic reconfiguration of the MV loop after a fault detection can be achieved.

[^0]
RM6 range functions

The RM6 range brings together all of the MV functions enabling:

- connection, power supply and protection of transformers on a radial or open-ring network via 200 A circuit breakers with an independent protection chain or via combined fuse-switches
■ protection of lines by a 630 A circuit breaker
■ and now production of private MV/LV substations with MV metering.

Device designation

(*) Refer to the table on page 48 for the choice of different combinations

Electrical characteristics		12	$\mathbf{1 7 . 5}$	$\mathbf{2 4}$	
Rated voltage	Ur	kV			
Insulation level					
Industrial frequency	Ud	$50 \mathrm{~Hz} 1 \mathrm{~min} .(\mathrm{kV} \mathrm{rms}) 28$	38	50	
Impulse	Up	$1.2 / 50 \mu \mathrm{~s} \mathrm{(kV} \mathrm{peak)}$	75	95	125
Tank internal arc withstand		$\mathbf{2 0 ~ k A ~ 1 s}$			

Climatic conditions

		${ }^{\circ} \mathrm{C}$	$\mathbf{4 0}$	$\mathbf{4 5}$	$\mathbf{5 0}$	$\mathbf{5 5}$	$\mathbf{6 0}$
Busbars 630 A	Ir	A	630	575	515	460	$\mathbf{4 2 5}$
Busbars 400 A	Ir	A	400	400	400	355	
Functions: I, O, B (with bushing type C)	A	630	575	515	460	425	
Function D (with bushing type B or C)	A	200	200	200	200	200	
Function Q	A	(1)	(2)	(2)	(2)		

(1) depends on fuse selection.
(2) consult us.

Global options

- Manometer or pressure switch
- Additional earth busbar in cable compartment
- Internal arc cable box 20 kA 1 s for I, D or B functions.

Option for operation

Voltage indicator:
■ VPIS

- VDS.

Accessories

- Raising plinth
- Set of 3 MV fuses Fusarc CF
- Phase comparator
- Test box for circuit breaker relay (VAP6)
- Additional operating handle.

Additional instructions:
Installation and civil Engineering instructions.

Connectors and adaptaters for RM6

- Connectors for 630 A (1 set $=1$ function)
- Connectors for 400 A (1 set $=1$ function)
- Connectors for 250 A (1 set $=1$ function).

Protection index

IP3X on front face.

Detailed characteristics for each function

Network points with switch disconnector (I function)

Rated voltage	Ur	(kV)	12	17.5	24	24	24	24
Short-time withstand current	Ik	(kA rms)	25	21	12.5	16	16	20
	tk	Duration (s)	1	1 or 3	1	1	1	1 or 3
Rated current busbars	Ir	(A)	630	630	400	400	630	630
Network switch (I function)								
Rated current		(A)	630	630	400	400	630	630
Breaking capacity (A)	Charging current		630	630	400	400	630	630
	Earth leakage fault		95	95	95	95	95	95
	No-load cable		30	30	30	30	30	30
Making capacity of switch and earthing switches		(kA peak)	62.5	52.5	31.25	40	40	50
Bushing			C	C	B or C	B or C	C	C

Non-extensible switchgear

NE-I

NE-II

NE-III

NE-IIII

Extensible switchgear to the right

RE-II

RE-III

RE-IIII

Double extensible switchgear

DE-III

Accessories and options (I function)

Remote operation

Motor mechanism and auxiliary contacts LBSw 2 NO-2 NC and ESw 1 O/C.

Auxiliary contacts alone

For main switch position indication LBSw 2 NO-2 NC and ESw 1 O/C
(this option is included in remote operation option).
Front door of cable connection compartment

- Bolted

■ Removable with ESw interlocking
■ Removable with ESw interlocking and LBSw interlocking.
Self-powered fault passage and load current indicators

- Flair 21D
- Flair 21DT
- Flair 22D
- Amp 21D.

Key locking devices

- Type R1
- Type R2.

Detailed characteristics for each function (cont.)

Network points with 630 A circuit breaker (B function)

Rated voltage	Ur	(kV)	12	17.5	24	24
Short-time withstand current	Ik	(kArms)	25	21	16	20
	tk	Duration (s)	1	1 or 3	1	1 or 3
Rated current busbars	Ir	(A)	630	630	630	630
Network switch (I function)						
Rated current		(A)	630	630	630	630
Breaking capacity (A)	Cha	urrent	630	630	630	630
	Earth	ge fault	95	95	95	95
	No-		30	30	30	30
Making capacity of switch and earthing switches		(kA peak)	62.5	52.5	40	50
Bushing			C	C	C	C
Line protection feeder (B function)						
Rated current		(A)	630	630	630	630
Short-circuit breaking capacity		(kA)	25	21	16	20
Making capacity		(kA peak)	62.5	52.5	40	50
Bushing			C	C	C	C

Non-extensible switchgear

NE-B

NE-BI

NE-IBI

Extensible switchgear to the right

Double extensible switchgear

Accessories and options (B function)

Remote operation	Undervoltage coil
Motor mechanism and auxiliary contacts circuit breaker	- 24 Vdc
CB 2 NO-2 NC and ESw 1 O/C	- 48 Vdc
(including shunt trip coil)	- 125 Vdc
Auxiliary contacts alone	- 110-230 Vac.
For circuit breaker position indication CB 2 NO-2 NC and ESw 1 O/C (this option is included in remote operation option).	Protection relay for CB transformer protection (VIP 300 or Sepam series 10)
Front door of cable connection compartment	Forbidden closing under fault 1 NC
■ Bolted	Auxiliary contact D or B tripping
■ Removable with ESw interlocking	
- Removable with ESw interlocking and	Key locking devices Type R1
CB interlocking.	
Shunt trip coil for external tripping	
■ 24 Vdc	
- 48/60 Vdc	
- 120 Vac	
- 110/125 Vdc-220 Vac	
- $220 \mathrm{Vdc} / 380 \mathrm{Vac}$.	

Detailed characteristics for each function (cont.)

Transformer feeder 200 A with circuit breaker (D function)

Rated voltage	Ur	(kV)	12	17.5	24	24	24	24	24
Short-time withstand current	Ik	(kArms)	25	21	12.5	16	12.5	16	20
	tk	Duration (s)	1	1 or 3	1	1	1	1	1 or 3
Rated current busbars	Ir	(A)	630	630	400	400	630	630	630
Network switch (I function)									
Rated current		(A)	630	630	400	400	630	630	630
Breaking capacity (A)	Cha	urrent	630	630	400	400	630	630	630
	Earth	ge fault	95	95	95	95	95	95	95
	No-l		30	30	30	30	30	30	30
Making capacity of switch and earthing switches		(kA peak)	62.5	52.5	31.25	40	31.25	40	50
Bushing			C	C	B or C	B or C	C	C	C
Transformer feeder by circuit breaker (D function)									
Rated current		(A)	200	200	200	200	200	200	200
Off-load transformer laking capacity		(A)	16	16	16	16	16	16	16
Short-circuit breaking capacity		(kA)	25	21	12.5	16	12.5	16	20
Making capacity		(kA peak)	62.5	52.5	31.25	40	31.25	40	40
Bushing			C	C	A	B or C	A	B or C	C

Non-extensible switchgear

NE-DI

NE-IDI

NE-DIDI

Extensible switchgear to the right

Double extensible switchgear

Accessories and options (D function)

Remote operation
Motor mechanism and auxiliary contacts circuit breaker
CB 2 NO- 2 NC and ESw 1 O/C
(including shunt trip coil).
Auxiliary contacts alone
For circuit breaker position indication CB 2 NO - 2 NC and ESw 1 O/C
(this option is included in remote operation option).
Front door of cable connection compartment

- Bolted
- Removable with ESw interlocking
- Removable with ESw interlocking and CB interlocking.

Shunt trip coil for external tripping
■ 24 Vdc

- 48/60 Vdc
- 120 Vac
- 110/125 Vdc - 220 Vac
- $220 \mathrm{Vdc} / 380 \mathrm{Vac}$.

Undervoltage coil

- 24 Vdc
- 48 Vdc
- 125 Vdc
- 110-230 Vac.

Protection relay for CB transformer protection (VIP 30, 35, 300 or Sepam series 10)
Forbidden closing under fault 1 NC
Auxiliary contact D or B tripping
Key locking devices

- Type R6
- Type R7
- Type R8.

Detailed characteristics for each function (cont.)

Transformer feeder with fuse-switch combinations (Q function)

Rated voltage	Ur	(kV)	12	12	17.5	24	24	24	24
Rated current busbars	Ir	(A)	630	630	630	400	400	630	630
Network switch (I function)									
Rated current		(A)	630	630	630	400	400	630	630
Breaking capacity (A)	Charging	urrent	630	630	630	400	400	630	630
	Earth lea	ge fault	95	95	95	95	95	95	95
	No-load		30	30	30	30	30	30	30
Short-time withstand current		(kArms)	21	25	21	12.5	16	16	20
	Duration	(s)	1	1	1 or 3	1	1	1	1 or 3
Making capacity of switch and earthing switches		(kA peak)	52.5	62.5	52.5	31.25	40	40	50
Bushing			C	C	C	B or C	B or C	C	C
Transformer feeder with fuse-switch protection (Q function)									
Rated current		(A)	200	200	200	200	200	200	200
Off-load transformer laking capacity		(A)	16	16	16	16	16	16	16
Short-circuit breaking capacity		(kA)	21	25	21	12.5	16	16	20
Making capacity		(kA peak)	52.5	62.5	52.5	31.25	40	40	50
Bushing			A	A	A	A	A	A	A

Non-extensible switchgear

Double extensible switchgear

Accessories and options (Q function)

Auxiliary contacts alone
For fuse-switch combinations position indication LBSw 2 NO-2 NC
(this option is included in remote operation option)
Auxiliary contact for fuses blown
Shunt trip coil for external tripping

- 24 Vdc
- $48 / 60 \mathrm{Vdc}$
- 120 Vac
- 110/125 Vdc-220 Vac
- $220 \mathrm{Vdc} / 380 \mathrm{Vac}$.

Undervoltage coil

- 24 Vdc
- 48 Vdc
- 125 Vdc
- 110-230 Vac.

Detailed characteristics for each function (cont.)

Extensible modules (DE-I function)

Rated voltage	Ur	(kV)	12	17.5	24	24	24	24
Short-time withstand current	Ik	(kA rms)	25	21	12.5	16	16	20
	tk	Duration (s)	1	1 or 3	1	1	1	1 or 3
Rated current busbars	Ir	(A)	630	630	630	630	630	630
Network switch (DE-I function)								
Rated current		(A)	630	630	400	400	630	630
Breaking capacity (A)	Charging current		630	630	400	400	630	630
	Earth leakage fault		95	95	95	95	95	95
	No-load cable		30	30	30	30	30	30
Making capacity of switch and earthing switches		(kA peak)	62.5	52.5	31.25	40	40	50
Bushing			C	C	B or C	B or C	C	C

DE-I

Accessories or options

Remote operation
Motor mechanism and auxiliary contacts
Self-powered fault passage and load current
LBSw 2 NO-2 NC and ESw 1 O/C
Auxiliary contacts alone
For main switch position indication
LBSw 2 NO- 2 NC and ESw 1 O/C
(this option is included in remote operation option).
Front door of cable connection compartment
indicators

- Flair 21D
- Flair 21DT
- Flair 22D
- Amp 21D.
- Bolted
- Removable with ESw interlocking
- Removable with ESw interlocking and

LBSw interlocking.

Key locking devices
■ Type R1

- Type R2.

Network points with 630 A circuit breaker (DE-B function)

Rated voltage	Ur	(kV)	12	17.5	24	24
Short-time withstand current	Ik	(kA rms)	25	21	16	20
	tk	Duration (s)	1	1 or 3	1	1 or 3
Rated current busbars	Ir	(A)	630	630	630	630
Network circuit breaker (DE-B function)						
Rated current		(A)	630	630	630	630
Short-circuit breaking capacity		(kA)	25	21	16	20
Making capacity		(kA peak)	62.5	52.5	40	40
Bushing			C	C	C	C

DE-B

Accessories and options

Remote operation

Motor mechanism and auxiliary contacts circuit breaker
CB 2 NO- 2 NC and ESw 1 O/C
(including shunt trip coil).
Auxiliary contacts alone
For circuit breaker position indication
CB 2 NO- 2 NC and ESw 1 O/C
(this option is included in remote operation option).
Front door of cable connection compartment

- Bolted
- Removable with ESw interlocking
- Removable with ESw interlocking and

CB interlocking.
Shunt trip coil for external tripping

- 24 Vdc
- 48/60 Vdc
- 120 Vac
- 110/125 Vdc - 220 Vac
- 220 Vdc/380 Vac.

Undervoltage coil

- 24 Vdc
- 48 Vdc
- 125 Vdc
- 110-230 Vac.

Protection relay for CB transformer protection (VIP 300 or Sepam series 10)
Forbidden closing under fault 1 NC
Auxiliary contact D or B tripping
Key locking devices

- Type R1

■ Type R2.

Detailed characteristics for each function (cont.)

Transformer feeder 200 A with circuit breaker (DE-D function)

Rated voltage	Ur	(kV)	12	17.5	24	24	24
Short-time withstand current	Ik	(kArms)	25	21	12.5	16	20
	tk	Duration (s)	1	1 or 3	1	1	1 or 3
Rated current busbars	Ir	(A)	630	630	630	630	630
200 A circuit breaker (DE-D function)							
Rated current		(A)	200	200	200	200	200
Off-load transformer laking capacity		(A)	16	16	16	16	16
Short-circuit breaking capacity		(kA)	25	21	12,5	16	20
Making capacity		(kA peak)	62.5	52.5	31.25	40	50
Bushing			C	C	A	B or C	C

DE-D

Accessories and options

Remote operation
Motor mechanism and auxiliary contacts circuit breaker
CB 2 NO- 2 NC and ESw 1 O/C
(including shunt trip coil).

Auxiliary contacts alone

For circuit breaker position indication
CB 2 NO-2 NC and ESw 1 O/C
(this option is included in remote operation option).
Front door of cable connection compartment

- Bolted
- Removable with ESw interlocking
- Removable with ESw interlocking and CB
interlocking.
Shunt trip coil for external tripping
- 24 Vdc
- 48/60 Vdc
- 120 Vac
- 110/125 Vdc - 220 Vac
- $220 \mathrm{Vdc} / 380$ Vac.

Undervoltage coil

- 24 Vdc
- 48 Vdc
- 125 Vdc
- 110-230 Vac.

Protection relay for CB transformer protection
(VIP 30, 35, 300 or Sepam series 10)
Forbidden closing under fault 1 NC
Auxiliary contact D or B tripping
Key locking devices
■ Type R6

- Type R7
- Type R8.

Extensible modules (DE-Q function)

Rated voltage	Ur	(kV)	12	12	17.5	24	24	24
Rated current busbars	Ir	(A)	630	630	630	630	630	630
Fuses (DE-Q function)								
Rated current		(A)	200	200	200	200	200	200
Off-load transformer laking capacity		(A)	16	16	16	16	16	16
Short-circuit breaking capacity		(kA)	21	25	21	12.5	16	20
Making capacity		(kA peak)	52.5	62.5	52.5	31.25	40	50
Bushing			A	A	A	A	A	A

DE-Q

Accessories and options

Auxiliary contacts alone

For fuse-switch combinations position indication
LBSw 2 NO-2 NC
(this option is included in remote operation option)
Auxiliary contact for fuses blown
Shunt trip coil for external tripping

- 24 Vdc
- 48/60 Vdc
- 120 Vac
- 110/125 Vdc - 220 Vac
- $220 \mathrm{Vdc} / 380$ Vac.

Undervoltage coil

- 24 Vdc
- 48 Vdc
- 125 Vdc
- 110-230 Vac.

Key locking devices

- Type R6
- Type R7
- Type R8.

Detailed characteristics for each function (cont.)

Bus sectionalizer by load-break switch (DE-IC function)

Rated voltage	Ur	(kV)	12	17.5	24	24
Short-time withstand current	Ik	(kA rms)	25	21	16	20
	tk	Duration (s)	1	1 or 3	1	1 or 3
Rated current busbars	Ir	(A)	630	630	630	630
Network switch (DE-IC function)						
Rated current		(A)	630	630	630	630
Breaking capacity (A)	Cha	urrent	630	630	630	630
	Eart	ge fault	95	95	95	95
	No-		30	30	30	30
Making capacity of switch and earthing switches		(kA peak)	62.5	52.5	40	50

DE-IC

Accessories and options

Remote operation

Key locking devices

- Type R1
- Type R2.

Auxiliary contacts alone

For switch position indication
LBSw 2 NO - 2 NC and ESw 1 O/C
(this option is included in remote operation option).
Front door of cable connection compartment

- Bolted
- Removable with ESw interlocking

■ Removable with ESw interlocking and LBSw.

Bus sectionalizer by 630 A circuit breaker (DE-BC function coupling)

Rated voltage	Ur	(kV)	12	17.5	24	24
Short-time withstand current	Ik	(kArms)	25	17.5	16	24
	tk	Duration (s)	1	1 or 3	1	1 or 3
Rated current busbars	Ir	(A)	630	630	630	630
Bus sectionalizer circuit breaker (DE-BC function coupling)						
Rated current		(A)	630	630	630	630
Short-circuit breaking capacity		(kA)	25	21	16	20
Making capacity		(kA peak)	62.5	52.5	40	50

Accessories and options

Remote operation
Motor mechanism and auxiliary contacts circuit breaker CB 2 NO-2 NC and ESw 1 O/C
(including shunt trip coil).
Auxiliary contacts alone
For circuit breaker position indication
CB 2 NO-2 NC and ESw 1 O/C
(this option is included in remote operation option).
Front door of cable connection compartment

- Bolted
- Removable with ESw interlocking

■ Removable with ESw interlocking and
CB interlocking.
Shunt trip coil for external tripping

- 24 Vdc
- 48/60 Vdc
- 120 Vac
- 110/125 Vdc - 220 Vac
- $220 \mathrm{Vdc} / 380 \mathrm{Vac}$.

Detailed characteristics for each function (cont.)

Cable connection cubicles LE-O, RE-O, DE-O

Metering module DE-Mt

Rated voltage	Ur	(kV)	12	17.5	24	24
MV metering (DE-Mt function)						
Rated current		(A)	630	630	630	630
Short-time withstand current		(kA rms)	25	21	16	20
	Duration	(s)	1	1 or 3	1	1 or 3
Cubicle internal arc withstand	$16 \mathrm{kA} \mathrm{1s}$					

DE-Mt

Voltage transformers configuration
Schneider Electric models or DIN 42600 type section 9
2 phase-phase VT, 2 phase-earth VT, 3 TT phase-earth VT
Fitted right or left of the CT's
Optional fuse protection.
Current transformers configuration
Schneider Electric models or DIN 42600 type section 8
2 CT or 3 CT.
Accessories and options
Additional low voltage unit
Door key locking devices
■ Type R7.

The RM6 is boosted by the DE-Mt module

This air-insulated cubicle is fitted with conventional current transformers and voltage transformers enabling invoicing of MV power. It has an internal arc withstand and is integrated in the RM6 unit by a direct connection to the adjacent busbars.

Increased environmental insensitivity

■ By eliminating risks related to MV cables (incorrect connection, non-compliance with radius of curvature between two adjacent cubicles, etc.)

- Completely closed module (no opening to the bottom, no ventilation grid)
- Factory tested module.

A clear separation between MV and LV

Everything is done to avoid having to act on the MV compartment. The secondary of CT and VT's are cabled to the customer terminal in an LV compartment.
This LV compartment enables:

- connection to a remote power meter (in another room)
or
- connection to the LV unit mounted on the LV compartment (option).

An LV unit adapted to your requirements

This unit allows the installation of active power meters, a reactive power meter, and all auxiliaries for monitoring current, voltage and consumed power.

Line and transformer protection by circuit breaker
 VIP 300

VIP 300

The 630 A circuit breaker has been designed to protect Medium Voltage feeders as near to the fault as possible. The protection unit is identical to that of the 200 A circuit breaker, with a VIP 300 relay adapted to network protection.

VIP 300 self-powered protection relay

VIP 300 protects against phase to phase faults and earth faults. The choice of tripping curves, and the multiplicity of settings enable it to be used with a wide variety of discrimination plans.
VIP 300 is a self-powered relay which obtains its power supply from current sensors. It does not need an auxiliary power supply. It actuates a release.

Description

The operating principle of the protection unit is the same as for the VIP 30 and VIP 35 relays.

Phase protection

Phase protection has two independently adjustable set points:
■ either an IDMT or definite low set point can be selected. The IDMT curves are in conformity with the IEC 60255-3 standard. They are of the inverse,
very inverse and extremely inverse type.

- the high set point is a definite time one.

Earth protection

■ Earth fault protection operates with measurement of the residual current carried
out using the sum of the secondary currents of the sensors.
■ As with phase protection, earth protection has two independently adjustable set points.

Indication

- Two indicators show the origin of tripping (phase or earth). They remain in position after the relay power supply is cut off.
- Two LED indicators (phase and earth) indicate that the low set point has been exceeded and its time delay is in progress.

With IDMT Iow set point

With definite time low set point

Unit characteristics

Line and transformer protection by circuit breaker

VIP 300 (cont.)
\qquad

- The curves in this chapter indicate the low set IDMT tripping times for time delay settings $\mathrm{t}>$ (or to $>$).
- The phase protection and earth protection curves are identical.

VI curve

Line and transformer protection by circuit breaker

VIP 30, VIP 35

The curve represent the relay intervention time, to which 70 ms must be added to obtain the breaking time.

In contrast to fuses, the circuit breaker has no minimum breaking current, which means that it is particularly well-adapted to transformer protection.

VIP 30 and VIP 35 self-powered protection relays

VIP 30 and VIP 35 are self-powered relays, requiring no auxiliary power supply, which are fed by current sensors, activating a MITOP release.

- VIP 30 protects against phase to phase faults.
- VIP 35 protects against phase to phase faults and earth faults.

Protection system

The protection system operates without an auxiliary power supply, and includes:

- 3 transformers with integrated toroids on the transformer feeder bushings
- 1 VIP 30 or VIP 35 electronic relay
- 1 release
- 1 test connector to check whether the protection unit is operating correctly, using the VAP 6 unit.

Description

■ The relays are assembled in a housing, and the front faces are protected a transparent cover. The whole assembly has a degree of protection of IP54.
■ Settings are made on the front, using rotary switches.

- The phase operating current is adjusted directly according to the transformer rating and the operating voltage.
■ The earth current set point is adjusted according to the network characteristics.

Phase protection

- Phase protection is provided by an IDMT set point which operates as of 1.2 times the operating current (Is). VIP 30 and VIP 35 phase protections are identical.

Earth protection

- Earth fault protection operates with measurement of the residual current carried out using the sum of the secondary currents of the sensors.
■ Earth protection operates in definite time: both its set point and time delay are adjustable.

Rated protection current setting selection

Operating voltage (kV)	Transformer rating (kVA)				160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3000	Rated voltage (kV)
	50	75	100	125															
3	10	15	20	25	36	45	55	68	80	140	140	170	200						12
3.3	10	15	18	22	28	36	45	56	70	90	140	140	200						
4.2	8	12	15	18	22	28	36	45	56	70	90	140	140	200					
5.5		8	12	15	18	22	28	36	46	55	68	90	140	140	200				
6			10	12	18	20	25	36	46	55	68	80	140	140	200	200			
6.6			10	12	15	18	22	28	36	45	56	70	90	140	140	200			
10				8	10	12	15	20	25	30	37	55	68	80	140	140	170	200	
11					10	12	15	18	22	28	36	45	55	68	90	140	140	170	
13.8					8	10	12	15	18	22	28	36	46	55	68	90	140	140	24
15						8	10	15	18	20	25	36	45	55	68	80	140	140	
20							8	10	15	20	25	30	37	45	55	68	80	140	
22							8	10	12	15	18	22	28	36	45	55	68	80	

Line and transformer protection by circuit breaker

Sepam series 10

Sepam series 10 protection relays

- Protection against phase to phase faults and earth faults, capable to detect the earth faults from 0.2 A.
■ Possibility of communication with Easergy T200 I and remote circuit breaker control.
■ Thermal image overload protection (ANSI 49RMS).
■ Logic discrimination for shorter tripping time.
- Record of last fault or last five events.

Protection system

The protection system includes:

- 3 current transformers mounted on the bushings (same as VIP)

■ 1 specially designed homopolar transformer CSH2O0 for the measurement of residual current (only for high sensitivity models)

- 1 Sepam series 10 relay
- 1 trip coil of RM6.

The Sepam series 10 need an auxiliary power supply (not included in RM6).
The Sepam series 10 can be supplied by T200 I.

Simplicity and User-friendliness

■ Easy operation: User-Machine Interface with screen, keys and pictograms.
Parameter setting directly on the relay without need of computer.
■ Operating languages: English, Spanish, French, Italian, German, Turkish and Portuguese.

Characteristics

- 4 logic inputs
- 7 relay outputs

■ 1 communication port.

- Function available.
- Function availability depends on the Sepam model.

Rated protection current setting selection
Setting values of the Is phase operating current for Sepam series 10

VIP 30, 35, 300, Sepam series 10 selection guide

Functions	ANSI code	VIP 30	VIP 35	VIP 300	$\begin{array}{\|l\|l} \text { Sepam series } 10 \\ \text { B } & \text { A } \end{array}$	
Use						
Line protection				\square	\square	\square
Transformer protection		-	\square	\square	\square	\square
Power supply						
Self-powered		\square	\square	\square		
Auxiliary power supply					\square	\square
Protection						
Instantaneous phase overcurrent protection	50	\square	\square			
Setting range		$\begin{aligned} & 8-80 \mathrm{~A} \\ & 20-200 \mathrm{~A} \end{aligned}$	$\begin{array}{\|l\|} \hline 8-80 \mathrm{~A} \\ 20-200 \mathrm{~A} \end{array}$			
Phase overcurrent protection $\overline{\text { Setting range }}$	50-51			\square	\square	\square
				$\begin{aligned} & \hline 10-50 \mathrm{~A} \\ & 40-200 \mathrm{~A} \\ & 63-312 \mathrm{~A} \\ & 250-600 \mathrm{~A} \end{aligned}$	$\begin{array}{\|l\|} \hline 20-200 \mathrm{~A} \\ 125-630 \mathrm{~A} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 20-200 \mathrm{~A} \\ 125-630 \mathrm{~A} \end{array}$
Earth overcurrent protection	50N-51N		\square	\square	\square	\square
Setting range			$\begin{aligned} & 10-150 \mathrm{~A} \\ & 25-300 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 1-40 \mathrm{~A} \\ & 4-160 \mathrm{~A} \end{aligned}$	$\begin{array}{\|l\|} \hline 20-200 \mathrm{~A} \\ 125-500 \mathrm{~A} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 20-200 \mathrm{~A} \\ 125-500 \mathrm{~A} \\ \hline \end{array}$
Minimum operating phase current		10A	10 A	10 A		
Very sensitive earth overcurrent protection	50G-51G				\square	\square
Setting range					$\begin{aligned} & \hline 2-240 \mathrm{~A} \\ & 0.2-24 \mathrm{~A} \end{aligned}$	$\begin{array}{\|l\|} \hline 2-240 \mathrm{~A} \\ 0.2-24 \mathrm{~A} \\ \hline \end{array}$
Thermal image protection	49RMS				\square	\square
Cold load pick-up					\square	\square
Measurements						
Phase currents I1, I2, I3 (RMS)					\square	\square
Earth current lo					\square	\square
Phase current maximeter					\square	\square
Control and signalling						
$\begin{array}{ll}\text { Logic discrimination } & \text { Blocking send } \\ \text { Blocking reception }\end{array}$	68				\square	\square
						\square
						\square
Acknowledgement latch	86				\square	\square
Tripping indication					\square	\square
Remote circuit breaker control						\square
ON position interlocking					\square	\square
Record of last fault					\square	\square
Record of last five events						\square
Switchgear diagnostic						
Trip-circuit supervision						\square
Communication						
Modbus						\square
IEC 60870-5-103						\square

Unit characteristics

Transformer protection by fuse-switches

Fuse replacement

IEC recommendations stipulate that when a fuse has blown, all three fuses must be replaced.

Ratings for fuses for transformer protection depend, among other points, on the following criteria:

- service voltage
- transformer rating
- thermal dissipation of the fuses

■ fuse technology (manufacturer).
Type of fuse may be installed:
■ Fusarc CF type: according to IEC 60282-1 dimensional standard, with or without striker.
Example (using the selection table below) general case, for protection of a 400 kVA transformer at 10 kV , Fusarc CF fuses with a rating of 50 A are chosen.

Correct operation of the RM6 is not guaranteed when using fuses from other manufacturers.

Selection table

(Rating in A, no overload, $-25^{\circ} \mathrm{C}<\theta<40^{\circ} \mathrm{C}$)

(1) SIBA type fuses at $160 \mathrm{~A} / 12 \mathrm{kV}$ reference 30-020-13.
(2) In the case of an external trip system (e.g.: overcurrent relay)

A calculation must be carried out to guarantee coordination of fuse-switches - Please consult us. For any values not included in the table, please consult us.
In the case of an overload beyond $40^{\circ} \mathrm{C}$, please consult us.

Fuses dimensions

L500 network monitor screen
Continuity of service guaranteed by an overall telecontrol offer
Schneider Electric offers you a complete solution, including:

- the Easergy T200 I telecontrol interface

■ MV switchgear that is adapted for telecontrol.

Easergy L500, a low cost solution to immediately improve your SAIDI*

* SAIDI: system average interruption duration index

Easergy L500 is a SCADA providing all the functions needed to operate the MV network in real time

- Pre-configured with Easergy range products for monitoring and control of MV networks:
- MV/LV substations equipped with T200 I or Flair 200C
- overhead LBS equipped with T200 P
\square overhead line equipped with Flite 116/G200
- Broad range of transmission supports: Radio, GSM, GPRS, PSTN, LL, FO.

Advantages

■ Simple implementation:

- one to two weeks only for $20 \mathrm{MV} / \mathrm{LV}$ units
\square configuration, training and handling within a few days
- Simple and fast evolutions by operations managers
- Short return on investment
- Service quality and operations rapidly improved.

Easergy T200 I: an interface designed for telecontrol of MV networks

Easergy T200 I is a "plug and play" or multifunction interface that integrates all the functional units necessary for remote supervision and control of the RM6: - acquisition of the different types of information: switch position, fault detectors, current values...

- transmission of switch open/close orders
- exchanges with the control center.

Required particularly during outages in the network, Easergy T200 I is of proven reliability and availability, being able to ensure switchgear operation at any moment. It is simple to set up and to operate.

Local information and control

Monitoring and control

Functional unit designed for the Medium Voltage network

- Easergy T200 I is designed to be connected directly to the MV switchgear, without requiring a special converter.
- It has a simple front plate for local operation, which allows management of electrical rating mechanisms (local/remote switch) and display of information concerning switchgear status.
■ It has an integrated MV network fault current detection system (overcurrent and zero sequence) with detection set points that can be configured channel by channel (current value and fault current duration).

Back up power supply

Polarized connectors

Split sensors

Medium Voltage switchgear operating guarantee

■ Easergy T200 I has undergone severe MV electrical stress withstand tests.
■ It is a backed up power supply which guarantees continuity of service for several hours in case of loss of the auxiliary source, and supplies power to the Easergy T200 I and the MV switchgear motor mechanisms.

■ Ready to plug

\square Easergy T200 I is delivered with a kit that makes it easy to connect the motor mechanisms and collect measurements.
\square the telecontrol cabinet connectors are polarized to avoid any errors during installation or maintenance interventions.

- current measurement acquisition sensors are of the split type, to facilitate their installation.
- works with 24 Vdc and 48 Vdc motor units.

Because a MV power supply interruption is unacceptable especially in critical applications, an automatic system is required for MV source transfer.

Auto-SW1 operating mode

Configurable parameters:

- Operating mode: semi-auto, auto SW1, auto SW2
- T1: 1 to 60 s in 1 s steps
- T2: 10 to 60 s in 1 s steps
- Automation system valid/invalid

For your peace of mind, RM6 gives automatic control and management of power sources in your Medium Voltage secondary distribution network with a short transfer time (less than 10 seconds), guaranteeing the hi-reliability of your installation.
Automatic control is performed by Easergy T200 I. This T200 I device can also be used for remote control with a wide range of modems and protocols.
By default, the T200 I is provided with the RS232 modem and the Modbus/IP protocol.

Auto changeover switch (ACO 1/2)

Changeover between two sources in the distribution network: SW1 and SW2.

Operating modes

The operating mode is selected from the Easergy T200 I configurator.
Semi-Auto mode, SW1 < > SW2
In the event of a voltage loss on one of the three phases of the active line, automatic control switches to the other channel
 after a time delay T1: opening of SW1 and then closing of SW2. Automatic control executes no return, except in case of voltage loss on the new active channel.

Semi-Auto mode SW1 > SW2, (SW2 > SW1)
Automatic control executes only one changeover from channel 1 or 2 to the backup channel.

Mode Auto-SW1 or Auto-SW2

After a changeover, return to the priority channel occurs if the MV voltage on that channel is restored.

Configurable parameters:

- Operating mode
- Automatic return SW1/SW2
- Automation system on/off
- Delay before switching

T1: 100 ms to 60 s in 100 ms steps

- Delay before return

T2: 5 s to 300 s in 1 s steps

- Interlock delay on voltage loss

T3: 100 ms to 3 s in 100 ms steps

- Motorisation type: command time.

Bus tie coupling (BTA 2/3)

Source changeover between 2 incoming lines (SW1 and SW2) and a busbar coupling switch (SW3).

Operating modes

Standard Semi-Auto mode

In the event of a voltage loss on one of the three phases of the SW1 line, following time delay T1, automatic control opens SW1 and then closes SW3.
After closing of SW3, presence of voltage on SW2 is monitored for a period T3.
If the voltage is lost during this period, SW3 opens and the system is locked.
Same logic if the voltage disappears on SW2.

Auto mode

Same sequence as Semi-Auto mode. Then, if the voltage returns normally on SW1 during a time delay T2, the system changes over (opening of SW3 and closing of SW1).
Same logic if the voltage disappears on SW2.

An ATS solution is made of:

Switch and circuit breaker motorization

Motor mechanism

Switch operating mechanism

- The switch operating mechanism includes a space that is reserved for the installation of a geared motor. This can be installed at the factory, but it can also the installed on-site, by the customer, without de-energizing the unit, and without dismantling the operating mechanism.
- An electrical interlocking assembly prohibits any false operations. Once motorized, the RM6 integrates perfectly into a telecontrol system.

Circuit breaker operating mechanism

■ Circuit breaker protection functional units can be equipped with a geared motor. This can be installed at the factory, but it can also be installed on-site, by the customer, without de-energizing the unit, and without dismantling the operating mechanism. - Electrical locking prohibits any false operations, with, as an option, closing after an unacknowledged fault. Once motorized, the RM6 integrates perfectly into a telecontrol system.
This option becomes particularly useful in the context of the protection of a secondary ring, with supervision by a telecontrol system.

Unit applications

Operating mechanism types	CIT	Cl1		Cl1		
Main circuit switch	Switch	Circuit breaker	Fuse switch combination			
Manual operating mode	Closing	Opening	Closing	Opening	Closing	Opening
Remote control option	Hand lever	Hand lever	Hand lever	Push button	Hand lever	Push button
Speed of operation	Motor	Motor	Motor	Coil	-	Coil
Earthing switch	1 to 2 s	1 to 2 s	11 to 13 s	45 to 75 ms	-	60 to 85 ms
Manual operating mode	Closing	Opening	Closing	Opening	Closing	Opening

Motor option for switch-units and circuit breakers
The operating mechanism I, D and B functions may be motorized

		DC				AC $(50 \mathrm{~Hz})^{*}$			
Un power supply	$(\mathrm{V})^{* *}$	24	48	60	110	125	220	120	230
Power	(W)	240							
	(VA)					280			

[^1]

Auxiliary contacts

■ Each switch or circuit breaker can be fitted with 4 auxiliary contacts with the following positions: 2 NO and 2 NC.
■ The earthing switch (except fuse-switch combination) can be fitted with 1 auxiliary contact with the following position: (opening/closing).
■ Each circuit breaker can receive 1 auxiliary contact for tripping indication (protection by VIP).
■ Each fuse-switch combination can be fitted with 1 blown fuse indication auxiliary contact.

Opening release

Each circuit breaker or fuse-switch combination can be fitted a switch-on opening release (shunt trip).
Opening release option for each circuit breaker or fuse-switch combination

		DC				AC $(50 \mathrm{~Hz})^{*}$			
Un power supply	(V)	24	48	60	110	125	220	120	230
Power	(W)	200	250	250	300	300	300		
	(VA)							400	750
Response time	(ms)	35					35		

(*) Please consult us for other frequencies

Undervoltage coil

Available on the circuit breaker function and on the combined fuse-switch, this trip unit causes opening when its supply voltage drops below a value under 35% of its rated voltage.

		DC						AC (50 Hz)*	
Un power supply	(V)	24	48	60	110	125	220	120	230
Power									
Excitation	(W or VA)	200 (during 200 ms)						200	
Latched	(W or VA)	4.5						4.5	
Threshold									
Opening		0.35 to 0.7 Un						0.35 to 0.7	
Closing		0.85 Un						0.85	

[^2]Accessories
Fault current and load current indicators

Fault current indicator

RM6 switchboard integrate fault passage indicators, on every switch function: Flair 21D, Flair 21DT, Flair 22D (*).
These FPI are self-powered by the sensors and comprise a digital display. They provide:

- earth fault indication,
- phase fault indication,

■ load current display (Ampermeter).
(*) RM6 can also be provided with Alpha M or Alpha E (Hortzmann) type short circuit indicators.

Load current indicator

The RM6 can also be provided with an ammeter dedicated to indication of load currents on an MV network, on each switch function:

- Amp 21D

This ammeter is specially dedicated to network load monitoring via the digital display of the load current.

The installation of all the indicators on site can be facilitated by using the current measurement sensors of the split type, without removing MV cables.

Characteristics

AMP 21D

21DT

	21D	21DT	22D	Amp 21D
Fault detection				
Earth fault	20 to 160 A	20 to 160 A	20 to 160 A	-
Phase fault	200 to 800 A	200 to 800 A	200 to 800 A	-
Reset	\square	\square	\square	-
SCADA interface	-	\square	\square	-
Display unit				
Display	2 digits	2 digits	4 digits	4 digits
Current resolution	10 A	10 A	1 A	1 A
Accuracy	$\pm 10 \%$	$\pm 10 \%$	$\pm 10 \%$	$\pm 10 \%$
Settings	\square	\square	\square	-
Faulty phase	\square	\square	\square	-
Frequency	-	-	\square	\square
Peak demand current	-	-	\square	\square
Load current demand	\square	\square	\square	\square
Others				
Dual powered (sensor and battery)	-	-	\square	-
External light	\square	\square	\square	-

Flair 21D, 21DT, 22D and Amp 21D operate with a load current more than 3 A. Due to a lithium battery, Flair 22D can be configurated with no load current (setting display, reset temporisation $>4 \mathrm{~h}$).

Voltage presence indicator

There is a voltage indicator device on network switches, circuit breakers and fuse-switch combinations, which makes it possible to check whether or not there is a voltage across the cables.
Two devices are offered:
■ VDS: Voltage Detecting System

- VPIS: Voltage Presence Indication System.

Voltage presence relay VD3H

Phase concordance unit

This unit is used to check phase concordance.
It can be connected to any voltage indicator lamp device.

Voltage detection

The system is implemented with a changeover switch VPIS (with voltage output) connected to the VD3H relay.
The VD3H voltage relay can detect phase voltage loss or a phase-to-phase voltage unbalance on a medium-voltage network.

- Phase voltage monitoring

The signals for each voltage (L1, L2, L3) are compared with 2 thresholds.
■ Residual voltage monitoring
The phase-to-phase voltage unbalance is obtained by the sum of the three voltages.
The voltage presence signal is delivered by a dry contact. It indicates voltage presence on the three phases and absence of a UR voltage.
■ Auxiliary voltage: $24,48,110$ V DC.

Protection relay test

The portable VAP 6 unit is connected to the circuit breaker protection relay: ■ injecting an electrical stimulus, two pushbuttons are used to check that the short-circuit and zero sequence fault current protection devices are operating ■ an extra pushbutton may be provided to inhibit tripping of the circuit breaker.

Options for cable compartment

Standard equipment:

- a closing panel
- cable binding
- connection of cable earthing.

Optional equipment:

- panel with hood to display liquid type overcurrent indicators installed around the cables
- deeper panel to enable to adding of a lightning arrester
- interlocking to prohibit access to the connection compartment when the earthing switch is open
■ interlocking to prohibit closing of the switch or circuit breaker when the connection compartment panel is open
■ compartment base for single-core or three-core cables
(compulsory for non-directive field connections)
- internal arc withstand for the cable compartment up to 20 kA 1 s .

The markings (O, S, and X) are engraved on the keys and the locks.
They are given here only as an aid to understanding of the diagrams.
When the switchgear is locked in the "open" position, the remote control can't work.

On network switches or 630 A circuit breaker feeder

Semi-crossed locking
■ Prohibits the closing of the earthing switch of the downstream switchgear unless the upstream switchgear is locked in the "open" position.

Crossed locking

■ Prohibits closing of the earthing switches unless the upstream and downstream switchgear is locked in the "open" position.

On transformer feeders

RM6/transformer

■ Prohibits access to the transformer unless the earthing switch has been locked in the "closed" position.

RM6/low voltage

- Prohibits closing of the earthing switch and access to any protection unit fuses unless the main LV circuit breaker has been locked in the "open" or "disconnected" position.

RM6/transformer/low voltage

- Prohibits closing of the earthing switch and access to any protection unit fuses unless the main LV circuit breaker has been locked in the "open" or "disconnected" position".
■ Prohibits access to the transformer unless the earthing switch has already been "closed".

Legend:
no key
free key
captive key

Selecting bushings and connectors

Types of connection interface

This information must be specified for better definition of the connection interfaces.

General

■ The profiles, contacts and dimensions of the RM6 connection interfaces are defined by the IEC 60137 standard.

- 100\% of the epoxy resin interfaces undergo dielectric testing at power frequency and partial discharge tests.
■ An insulated connector must used in order to guarantee the dielectric performance over time. Schneider Electric recommends using nkt connectors.

Appropriateness for use

The bushings carry the electrical current from the outside to the inside of the enclosure, which is filled with SF6 gas, ensuring insulation between the live conductors and the frame.
There are 3 types of bushing, which are defined by their short-time withstand current:
■ Type A: $200 \mathrm{~A}: 12.5 \mathrm{kA} 1 \mathrm{~s}$ and 31.5 kA peak (plug-in)

- Type B: 400 A: 16 kA 1 s and 40 kA peak (plug-in)

■ Type C: $630 \mathrm{~A}: 25 \mathrm{kA} 1 \mathrm{~s}, 21 \mathrm{kA} 3 \mathrm{~s}$ and 62.5 kA peak (disconnectable M16).

How to define the connection interface

The connection interfaces depend on specific criteria, such as:

Installation

■ Current rating of the connected equipment: 200, 400, 630 A
■ Short-time withstand current for $12.5 \mathrm{kA}, 16 \mathrm{kA}, 25 \mathrm{kA}$ switch and circuit breaker functions

- For the fuse-switch combination function, as the short-circuit current is limited
by the fuse, the connection interface will be of type A (200 A)
- Minimum phase expansion length
- Connection type:
\square plug in: multicontact ring
\square disconnectable: bolted.
- Output position: straight, elbow.

Cable

- Specified voltage:
\square of the cable
\square of the network.
- Type of conductor:
- aluminium
\square copper.
- Cross section in mm²
- insulation diameter
- Cable composition:
- single-core
- 3-core.
- Insulation type:
\square dry
\square paper impregnated (non-draining type).
- Type of screen
- Armature.

Connections proposed in the offer

Schneider Electric offers the following $\boldsymbol{n k t}$ cable connectors in its offer

Type A bushing

Directed field plug-in connector
Dry single-core cable

	Dry single-core cable					
Performance	Connection	Supplier	Reference	Cross section	Remarks	
7.2 to 17.5 kV	Plug-in	nkt cables GmbH	EASW 12/250 A	25 to 95	Shaped elbow	
$200 \mathrm{~A}-95 \mathrm{kV}$ impulse	Plug-in	nkt cables GmbH	EASG 12/250 A	25 to 95	Straight	
24 kV	Plug-in	nkt cables GmbH	EASW 20/250 A	25 to 95	Shaped elbow	
$200 \mathrm{~A}-125 \mathrm{kV}$ impulse	Plug-in	nkt cables GmbH	EASG 20/250 A	25 to 95	Straight	

Type B bushing

Directed field plug-in connector
Dry single-core cable

Performance	Connection	Dry single-Core cable		Cross section	Remarks
7.2 to 17.5 kV	Plug-in	nkt cables GmbH	CE 12-400	25 to 300	
$400 \mathrm{~A}-95 \mathrm{kV}$ impulse					
24 kV	Plug-in	nkt cables GmbH	CE 24-400	25 to 300	
$400 \mathrm{~A}-125 \mathrm{kV}$ impulse					

		Type C bus	ing		
		Directed field	disconnec	connector	
		Dry single-co	e cable		
Performance	Connection	Supplier	Reference	Cross section	Remarks
7.2 to 17.5 kV	Disconnectable	nkt cables GmbH	CB 12-630	25 to 300	
$630 \mathrm{~A}-95 \mathrm{kV}$ impulse					
24 kV	Disconnectable	nkt cables GmbH	CB 24-630	25 to 300	
$630 \mathrm{~A}-125 \mathrm{kV}$ impulse					
		Non-directed	field disco	able connect	
		Dry single and	three-cor		
Performance	Connection	Supplier	Reference	Cross section	Remarks
7.2 to 17.5 kV	Disconnectable	nkt cables GmbH	AB 12-630	25 to 300	For 3-core cable
$630 \mathrm{~A}-95 \mathrm{kV}$ impulse				(+ ATS)	

Other types of compatible connections

		Type A bushing			
		Directed field plug-in connector			
		Dry single-core cable			
Performance	Connection	Supplier	Reference	Section	Remarks
7.2 to 10 kV	Plug-in	Elastimold	158LR	16 to 120	T-shaped elbow
$200 \mathrm{~A}-95 \mathrm{kV}$ impulse			151SR	16 to 120	Straight, Q function only
		Pirelli	FMCE 250	16 to 95	
7.2 to 24 kV	Plug-in	Elastimold	K158LR	16 to 95	T-shaped elbow
$200 \mathrm{~A}-125 \mathrm{kV}$ impulse			K151SR	25 to 95	Straight, Q function only

Type A/M8 bushing

Non-directed field disconnectable connector (*)
Dry single and three-core cable

Performance	Connection	Supplier	Reference	Cross section	Remarks
7.2 to 17.5 kV	Heat shrinkable	Raychem	EPKT+EAKT+RSRB 16 to 150		
$200 \mathrm{~A}-95 \mathrm{kV}$ impulse	Insulating boots	Kabeldon	KAP70	70 max.	

(*) 520 mm plinth must be used

Type B bushing

Directed field plug-in connector

Dry single-core cable

Performance	Connection	Supplier	Reference	Cross section	Remarks
7.2 to 10 kV	Plug-in	Elastimold	400 LR	70 to 240	Limited to Us = 10 kV
$400 \mathrm{~A}-95 \mathrm{kV}$ impulse					
24 kV	Plug-in	Pirelli	FMCE 400	70 to 300	
$400 \mathrm{~A}-125 \mathrm{kV}$ impulse		Elastimold	K400LR	35 to 240	
	Kabeldon	SOC 630	50 to 300		

Type C bushing

Directed field disconnectable connector
Dry single-core cable

Performance	Connection	Supplier	Reference	Cross section	Remarks
7.2 to 10 kV	Disconnectable	Elastimold	440 TB	70 to 240	
$630 \mathrm{~A}-95 \mathrm{kV}$ impulse					
7.2 to 24 kV	Disconnectable	Pirelli	FMCTs 400	70 to 300	
$630 \mathrm{~A}-125 \mathrm{kV}$ impulse		Elastimold	K400TB	35 to 240	
	Kabeldon	SOC 630	50 to 300		

Non-directed field disconnectable connector
Dry single and three-core cable

Performance	Connection	Supplier	Reference	Cross section	Remarks
7.2 to 17.5 kV	Heat shrinkable	Raychem	EPKT+EAKT+RSRB	16 to 300	
630 A-95 kV impulse		Sigmaform	Q-CAP	16 to 300	
	Insulating boots	Kabeldon	SOC 630	50 to 300	Completed by a kit for three-pole cable
		Pirelli	ELPB12	50 to 300	Limited to 75 kV impulse
	Simplified disconnectable	Raychem	RICS - EPKT	25 to 300	
		Euromold	15TS-NSS	50 to 300	Limited to Us $=12 \mathrm{kV}$
24 kV $630 \mathrm{~A}-125 \mathrm{kV}$ impulse	Simplified disconnectable	Raychem	RICS - EPKT	25 to 300	

Other types of compatible connections (cont.)

		Type C bushing (cont.)			
		Non-directed field disconnectable connector			
		Single-core cable, paper impregnated, non-draining type			
Performance	Connection	Supplier	Reference	Cross sec	Remarks
7.2 to 17.5 kV	Disconnectable	Pirelli	FMCp400	95 to 300	
630 A-95 kV impulse	Insulating boots	Kabeldon	SOC	25 to 300	
		Pirelli	ELPB12	50 to 300	Limited to 75 kV impulse
	Simplified disconnectable	Raychem	RICS - EPKT	25 to 300	
	Heat shrinkable	Raychem	EPKT+EAKT+RSRB	95 to 300	
24 kV	Disconnectable	Pirelli	FMCp 1c	95 to 300	
$630 \mathrm{~A}-125 \mathrm{kV}$ impulse	Simplified disconnectable	Raychem	RICS-EPKT	25 to 300	
		Non-directed field disconnectable connector			
		Three-core cable, paper impregnated, non-draining type			
Performance	Connection	Supplier	Reference	Cross sec	Remarks
7.2 to 17.5 kV 630 A-95 kV impulse	Insulating boots	Kabeldon	SOC 630	25 to 300	
		Pirelli	ELPB12	50 to 300	Limited to 75 kV impulse
	Simplified disconnectable	Raychem	RICS - EPKT	25 to 300	
	Heat shrinkable	Raychem	EPKT+EAKT+RSRB	16 to 300	
$24 \mathrm{kV}$	Simplified disconnectable	Raychem	RICS - EPKT	25 to 300	

Connectors with lightning arrestors

Disconnectable connector

Single-core dry cable and lightning arrestor

Performance	Connection	Supplier	Reference	Cross se	Remarks
7.2 to 17.5 kV 630 A-95 kV impulse	Disconnectable	nkt cables GmbH	(5 or 10 kA)	25 to 300	Non-directed field
			$\begin{aligned} & \text { CB } 24-630+\text { CSA } 24 \\ & (5 \text { or } 10 \mathrm{kA}) \end{aligned}$	25 to 300	Directed field
24 kV $630 \mathrm{~A}-125 \mathrm{kV}$ impulse	Disconnectable	nkt cables GmbH	AB 12-630 + ASA12 (5 or 10 kA)	25 to 300	Non-directed field
			$\begin{aligned} & \text { CB } 24-630+\text { CSA } 24 \\ & \text { (5 or } 10 \mathrm{kA} \text {) } \end{aligned}$	25 to 300	Directed field
7.2 to 17.5 kV 630 A-95 kV impulse	Disconnectable	Raychem	$\begin{aligned} & \text { RICS+EPKT } \\ & \text { RDA } 12 \text { or } 18 \end{aligned}$	25 to 300	
	Disconnectable	Elastimold	$\begin{aligned} & \text { K400TB + K400RTPA } 35 \text { to } 300 \\ & + \text { K156SA } \end{aligned}$		Cable box enlarged
24 kV	Disconnectable	Raychem	$\begin{aligned} & \text { RICS + EPKT } \\ & \text { RDA } 24 \end{aligned}$	25 to 300	
$630 \mathrm{~A}-125 \mathrm{kV}$ impulse					
	Disconnectable	Elastimold	$\begin{aligned} & \text { K440TB + K400RTPA } 35 \text { to } 300 \\ & + \text { K156SA } \end{aligned}$		Cable box enlarged

Dimensions and installation conditions

Dimensions of non-extensible RM6s

Dimensions of 2, 3 and 4 functions RM6 REs that are extensible on the right

Dimensions and installation conditions (cont.)

Dimensions of the RM6 DE 3 or 4 functions double extensible

Dimensions of stand-alone RM6 modules cables connections that are extensible

RM6 1
LE-O

RM6 1 function RE-O

Dimensions of stand-alone RM6 modules that are extensible on both sides

With two bushing protection covers for extensibility

Dimensions of the RM6 metering module

Dimensions and installation conditions (cont.)

Dimensions of RM6 REs with an extension module

- RM6 RE 3 functional units
with switch DE module: $\mathbf{A}=1731 \mathrm{~mm}$
- RM6 RE 4 functional units with switch DE module: $\mathbf{A}=2164 \mathrm{~mm}$
- RM6 RE 3 functional units
with circuit breaker DE module: $\mathbf{A}=1831 \mathrm{~mm}$
- RM6 RE 4 functional units
with circuit breaker DE module: $\mathbf{A}=2264 \mathrm{~mm}$
(*) Dimensions necessary on the right
of the RM6 in order to install an extension

Layout

Floor mounting
The RM6 is supported by 2 metal feet with holes for mounting:

- on a flat floor fitted with trenches, passages or ducts
- on concrete footing
- on studs
- on metal rails
- etc.

Additional raising plinth

As an option, the RM6 can be fitted with a 260 or 520 mm raising plinth. This addition, which simplifies civil engineering works, results in trenches of a smaller depth, or even in their complete elimination when the bending radius of the cables allows it.
The plinth is mounted directly on the floor.

Non-extensible RM6 (top view)

RM6 3 or 4 functional units with extensibility module

Wall mounting

There are two holes allowing the unit to be fixed on the wall as well as mounted on the floor.

RM6 2 functional units with switch or combined switch	$\mathrm{F}=1414 \mathrm{~mm}$
	G $=1288 \mathrm{~mm}$
RM6 2 functional units with circuit breaker	$\mathrm{F}=1514 \mathrm{~mm}$
	G $=1388 \mathrm{~mm}$
RM6 3 functional units with switch or combined switch	$\mathrm{F}=1771 \mathrm{~mm}$
	G $=1645 \mathrm{~mm}$
RM6 3 functional units with circuit breaker	$\mathrm{F}=1871 \mathrm{~mm}$
	G $=1745 \mathrm{~mm}$
RM6 4 functional units with switch or combined switch	$\mathrm{F}=2204 \mathrm{~mm}$
	G $=2078 \mathrm{~mm}$
RM6 4 functional units with circuit breaker	$\mathrm{F}=2304 \mathrm{~mm}$
	G $=2178 \mathrm{~mm}$

Ceiling clearance

For substations with fuse-holders, provide a minimum ceiling clearance of 1500 mm .

Dimensions and installation conditions (cont.)

Installation of the substation for internal arc withstand

When there is a requirement for installations with protection against internal arc faults, refer to the following diagrams.

Gas removal to the rear

Gas removal to the bottom

N.B.: parts for guiding the gases to vent openings and cooling walls are not part of the switchgear supply. These must be adapted to each specific case.

For connection to "network" or "transformer"via circuit breaker

The "network" cables can be run either:
■ through trenches, passages, ducts

- through the left or the right side.

Trench depth P or RM6 without plinth
Note: trench depths can be reduced and sometimes eliminated by adding a plinth.

愛

Cable insulation	Cable	Cross-section (mm²)	Bending radius	Cable entry through a trench		Cable entry through a duct	
				P (plug-in)	P (disconnectable)	P (plug-in)	P (disconnectable)
Dry insulation	Single	$\leqslant 150$	500	400		400	
		185 to 300	600	520		520	
	Three	$\leqslant 150$	550	660		660	
		185	650	770		770	
Paper impregnated non-draining type	Single	$\leqslant 150$	500		580		580
		185 to 300	675		800		800
	Three	$\leqslant 95$	635		750		750
		150 to 300	835		970		970

For "transformer" connection via fuse-switch

The cross-sections of "transformer" cables are generally smaller than those of the "network" cables. All the cables are then run through the same space. When straight MV connectors are used, the depth P indicated below can be greater than that of the "network" cables.

Cable insulation	Cable	Cross-section $\left(\mathbf{m m}^{2}\right)$	Bending radius	Plug-in Elbow connector	Plug-in Straight connector	Disconnectable (2) P	
Dry insulation	Single	16 to 35	335	100	520		335
		50 to 70	400	100	520	440	
	95 to 120	440	100	550	440		
	Three	35	435		520	725	
		50 to 70	500		520	800	

[^3]
Order form

Available functions

Basic unit characteristics

Rated voltage		(kV)	12	12	12	12	17.5	17.5	17.5	17.5	24	24	24	24	24	24	24	24	24	24
Short-time withstand current		(kArms)	21	21	25	25	21	21	21	21	12.5	12.5	12.5	16	16	16	20	20	20	20
		Duration (s)	1	1	1	1	1	3	1	3	1	1	1	1	1	1	1	3	1	3
Rated current		(A)	200	630	200	630	200	200	630	630	200	400	630	200	400	630	200	200	630	630
Extensions	Functions																			
	I					■			-		■	■			■	\square			■	
	D		■		-		-				-			■			-			
	B					\square			-	■						\square			■	
	Q1				-		■	\square			-			\square			■			
	DI				-		-	■			-			\square			-			
	BI					\square			-	■						\square			-	
	II					\square			■			■			\square	\square			■	
	IQI			\square		\square			\square	■		■			\square	\square			■	■
	IIQI			\square		\square			-	\square		\square			\square	\square			-	\square
	QIQI			\square		\square			\square	\square		\square			\square	\square			\square	\square
	IDI					\square			-	-		-	-		\square	\square			■	\square
	IIDI					\square			-	\square		\square	-		\square	\square			-	\square
	DIDI					\square			-	\square		\square	-		-	\square			-	\square
	III					\square			■	■		■			\square	\square			■	■
	IIII					\square			■	\square		■			\square	\square			■	\square
	IBI					\square			-	\square						\square			■	\square
	IIBI					■			■	\square						\square			■	\square
	BIBI					\square			■	■						\square			■	■
RE	0				■	\square		■		\square				■		\square	■		■	
	IQI			\square		\square			■	■		■			\square	\square			■	■
	IIQI			\square		\square			■	■		\square			■	\square			■	■
	QIQI			\square		\square			■	■		■			\square	\square			■	■
	IDI					\square			■	■		■	■		\square	\square			■	\square
	IIDI					\square			■	■		\square	■		\square	\square			■	\square
	DIDI					\square			■	■		■	■		\square	\square			■	■
	II					\square				\square		\square			■	\square			■	
	III					\square			■	■		\square			\square	\square			■	■
	IIII					\square			■	■		\square			■	\square			■	-
	IBI					\square			■	■						\square			■	\square
	IIBI					■			■	\square						\square			■	\square
	BIBI					\square			■	■						\square			■	-
LE	0				■	\square		■		\square				■		\square	■		■	
DE	1					\square			■	-		■			■	\square			■	-
	BC					\square				-						\square			-	■
	IC					\square				-						\square			-	■
	0				■	\square		\square		-				■		\square	-		-	
	Q		■		■		-	\square			■			\square			■	\square		
	D				\square		-	\square			■			■			■	\square		
	B					■			■	■						\square			■	■
	Mt					\square				\square						\square			-	■

N.B.: D and Q functions limited to 200 A

NE : non-extensible, RE: extensible to the right, LE: extensible to the left, DE: double extensible.

Option for D or B function (circuit breaker "C.B.")
Front door of cable connection compartment (only if this option is chosen with I function)
Bolted
Removable with ESw interlocking
Removable with ESw interlocking and C.B. interlocking
Protection relay for lines or transformer protection by circuit breaker (only one type of relay by unit) Relay Sepam series 10

| \square | \square | \square | \square | Standard
 \square | \square | Very sensitive | \square |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: |

Relay VIP 30 (over current)
Relay VIP 35 (over current and earth fault)
Relay VIP 300 (over current \& earth fault/multi curve in accordance with IEC 255-3)

Option for \mathbf{Q} function (fuse combination)

Auxiliary contacts alone

For position indication $2 \mathrm{NO}-2 \mathrm{NC}$
Auxiliary contact for fuses blown
Shunt trip coil for external tripping
 With communication

$\square \quad \square \quad \square \quad \square$

Option for D, B, Q functions
Undervoltage coil

Option for operation

Only one of the boxes (ticked \mathbf{X} or filled by the needed value) have to be considered between each horizontal line.
Green box \mathbf{X} corresponds to none priced functions.

Notes

Notes

Schneider Electric Industries SAS
89, boulevard Franklin Roosevelt
F-92505 Rueil-Malmaison Cedex
Tel.: +33 (0)1 41298500
www.schneider-electric.com

As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.

This document has been printed

on ecological paper
Publishing: Schneider Electric Industries SAS
Design: Schneider Electric Industries SAS
Printing: Imprimerie du Pont de Claix/JPF - Made in France

[^0]: Example of a cruise liner architecture

[^1]: (*) Please consult us for other frequencies.
 $\left(^{* *}\right)$ At least a 20 A power supply is necessary when starting the motor.

[^2]: (*) Please consult us for other frequencies

[^3]: (1) Leave a clearance of 100 mm
 (2) 520 mm plinth must be used

