SM6-24

Modular units

Catalogue 2009

A new path for achieving your electrical installations

A comprehensive offer

The SM6 range is part of a comprehensive offer of products that are perfectly coordinated to meet all medium and low voltage electrical distribution requirements.
All of these products have been designed to work together: electrical, mechanical and communication compatibility.
The electrical installation is thus both optimised and has improved performance:

- better service continuity,
- increased personnel and equipment safety,
- guaranteed upgradeability,
- efficient monitoring and control.

You therefore have all the advantages at hand in terms of know-how and creativity for achieving optimised, safe, upgradeable and compliant installations.

Tools for facilitating the design and installation

With Schneider Electric, you have a complete range of tools to help you get to know and install the products whilst complying with current standards and good working practices. These tools, technical sheets and guides, design software, training courses, etc are regularly updated.

Schneider Electric is associating itself with your know-how and your creativity to produce optimised, safe, upgradeable and compliant installations

For a real partnership with you

A universal solution doesn't exist because each electrical installation is specific. The variety of combinations on offer allows you to truly customise the technical solutions. You are able to express your creativity and put your know-how to best advantage when designing, manufacturing and exploiting an electrical installation.
Presentation
Generalities 11
Characteristics of the functional units 41
Connections 75
Installation 81
Appendices Order form 87

Contents

Presentation
The experience of a world leader 4
The range's advantages 5
Protecting the environment 6
A full range of services 7
The references of a leader 8
Quality assurance 9

The Schneider Electric experience's extends over forty years in factorybuilt cubicles and over thirty years in SF6 breaking technology for Medium Voltage switchgear.
This experience means that today Schneider Electric can propose a complementary range: vacuum type circuit breaker cubicles up to 24 kV and internal arc cubicles to reinforced the safety of people according to the IEC standard.
This gives you the advantage of unique experience, that of a world leader, with over 2,000 000 SF6 Medium Voltage units installed throughout the world.

Putting this experience at your service and remaining attentive to your requirements is the spirit of active partnership that we want to develop in offering you the SM6-24.

The modular SM6-24 is a range of harmonised cubicles equipped with SF6 or vacuum breaking technology switchgear with 30 years life span.
These cubicles allow you to produce all your Medium Voltage substation requirements up to 24 kV by superposing their various functions.
The result of in-depth analysis of your requirements, both now and in the future, SM6-24 cubicles mean that you can take advantage of all the features of both a modern and proven technology.

1975: innovation

Sulphur hexafluoride (SF6) is first used in an MV switch for an MV/LV transformer substation, with the VM6.

1989: experience
Over 300,000 VM6 cubicles equipped networks throughout the world.
1991: innovation and experience
Cumulated with the second generation of SM6 modular SF6 cubicles.

2008: a leading position

■ with over 900,000 SM6-24 cubicles installed around the world, Schneider Electric consolidates its position as uncontested leader in the Medium Voltage field.
■ development of the offer to enlarge the range of vacuum type circuit breaker cubicles up to 24 kV .

Upgradability

SM6-24, a comprehensive range
■ a comprehensive offer covering your present and future requirements

- a design adapted to the extension of your installations
- a catalogue of functions for all your applications
- a product designed to be in compliance with standards constraints
- options to anticipate the telecontrol of your installations.

Compactness

SM6-24, an optimised range
■ compact units, with low increment cubicles

- rationalised space requirement for switchboard installation
- reduction of civil works costs
- easy integration in factory-built outdoor substations for which the SM6-24
is particularly well designed.

Maintenance

SM6-24, a range with reduced maintenance
\square the active parts (breaking and earthing) are integrated in an SF6-filled, "sealed for life" unit

- the control mechanisms, are intented to function with reduced maintenance under normal operating conditions
- enhanced electrical endurance when breaking.

Ease of installation

SM6-24, a simple range to incorporate

- reduced dimensions and weights
- only one civil works layout
- a solution adapted to cable connection
- simplified switchboard busbar design.

Ease and safe to operate

SM6-24, a proven range
■ a three position switch to block incorrect switching

- the earthing disconnector has full closing capacity
- positive breaking of position indicators
- internal arc withstand in the cable and switchgear compartments
- clear and animated display diagrams
- switching lever with an "anti-reflex" function
- compartmented cubicles.

SM6-24: a range designed with telecontrol in mind

SM6-24 switchgear is perfectly adapted to telecontrol applications. Motorised, either when installed or at a later date on-site without any interruption in service, SM6-24 combines with the Easergy T200 remote control interface. You therefore benefit from a ready-to connect unit that is easy to incorporate providing guaranteed switchgear operation.

SM6-24: a range with adapted protection devices
With the SM6-24, Schneider Electric proposes solutions for network management; the Sepam and VIP or relay ranges protect installations, providing continuity of electrical supply and reducing downtime.

Schneider Electric's recycling service

Schneider Electric is committed to a long term environmental approach.
As part of this, the SM6-24 has been designed to be environmentally friendly, notably in terms of the product's recycleability.
The materials used, both conductors and insulators, are identified and easily separable.
At the end of its life, SM6-24 can be processed, recycled and its materials recovered in conformity with the draft European regulations on the end-of-life of electronic and electrical products, and in particular without any gas being released to the atmosphere nor any polluting fluids being discharged.

The environmental management system adopted by Schneider Electric production sites that produce the SM6-24 have been assessed and judged to be in conformity with requirements in the ISO 14001 standard.

Schneider Electric is capable of offering a full range of services either associated or not with the supply of the SM6-24 unit.

To improve the quality of your electrical power:

- network study, harmonics study, etc.

■ reactive energy compensation

- consumption monitoring

■ optimisation of your electrical power supply contracts.
To accompany the purchase and installation
of your SM6-24 equipment:
■ adaptation of our equipment to provide a better response
to your requirements
■ on site assembly, testing and commissioning
of your equipment

- customised financing solutions
- warranty extension
- operator training.

To accompany your installation throughout its life and upgrading your equipment:
■ upgrading your existing equipment: functional adaptation, control motorisation, renovation of protections units, etc.
■ on site work

- supply of replacement parts
- maintenance contracts
- end of life recycling.

Fore more information on all the services proposed by Schneider Electric, please contact your Schneider Electric Sales Office.

The references of a leader

SM6, a world-wide product

Asia/Middle East

- Canal Electrical Distribution Company, Egypt
- General Motors Holden, Australia
- Pasteur Institute, Cambodia
- Tian he City, China
- Sanya Airport, China
- Bank of China, Beijing, Jv Yanta, China
- Plaza Hotel, Jakarta, Indonesia
- Bali Airport, Indonesia

■ Wakasa Control Center, Japan
■ Otaru Shopping center, Japan
■ New City of Muang, Thong Than, Kanjanapas,
Thailand

- Danang and Quinhon Airport, Vanad, Vietnam
- British Embassy, Oman
- KBF Palace Riyadh, Saudi Arabia
- Raka Stadium, Saudi Arabia
- Bilkent University, Turkey

■ TADCO, BABOIL development, United Arab Emirates

- Melbourne Tunnel City Link, Australia

■ Campus KSU Qassim Riyad, Saudi Arabia

Africa

- ONAFEX, Hilton Hotel, Algeria
- Yaounde University, Cameroon
- Karoua Airport, Cameroon
- Libreville Airport, Gabon
- Ivarto Hospital, CORIF, Madagascar
- Central Bank of Abuja, ADEFEMI, Nigeria
- OCI Dakar, Oger international, CGE, Senegal
- Bamburi cement Ltd, Kenya
- Ivory Electricity Company, Ivory Coast

■ Exxon, New Headquarters, Angola

South America/Pacific

■ Lamentin Airport, CCIM, Martinique

- Space Centre, Kourou, Guyana
- Mexico City Underground System, Mexico

■ Santiago Underground System, Chile

- Cohiba Hotel, Havana, Cuba
- Iberostar Hotel, Bavaro, Dominican Republic
- Aluminio Argentino Saic SA, Argentina
- Michelin Campo Grande, Rio de Janeiro, Brazil

■ TIM Data Center, São Paulo, Brazil

- Light Rio de Janeiro, Brazil

■ Hospital Oswaldo Cruz, São Paulo, Brazil

Europe

■ EDF, France

- Eurotunnel, France

■ Nestlé company headquarters, France

- Stade de France, Paris, France

■ TLM Terminal , Folkestone, Great Britain

- Zaventem Airport, Belgium
- Krediebank Computer Centre, Belgium
- Bucarest Pumping station, Rumania
- Prague Airport, Czech Republic

■ Philipp Morris St Petersburg, Russia

- Kremlin Moscow, Russia
- Madrid airport, Spain
- Dacia Renault, Rumania

■ Lafarge cement Cirkovic, Czech Republic

- Caterpillar St Petersburg, Russia
- Ikea Kazan, Russia
- Barajas airport, Spain

■ Coca-cola Zurich, Switzerland

Quality assurance
 Quality certified to ISO 9001

A major advantage

Schneider Electric has integrated a functional organisation into each of its units．The main mission of this organisation is to check the quality and the compliance with standards．
This procedure is：
－uniform throughout all departments
－recognised by many customers and approved organisations．
But it is above all its strict application that has enabled recognition to be obtained by an independent organisation：
The French Quality Assurance Association（FQAA）．
The quality system for the design and manufacture of SM6－24 units has been certified in conformity with the requirements of the ISO 9001： 2000 quality assurance model．

呙
苞
$\stackrel{y}{2}$

Meticulous and systematic controls

During manufacture，each SM6－24 is subject to systematic routine testing which aims to check the quality and conformity：
－sealing testing
－filling pressure testing
－opening and closing rate testing
－switching torque measurement
－dielectric testing
－conformity with drawings and plans．
The results obtained are written and reported on the test certificate for each device by the quality control department．

The environmental management system adopted by Schneider Electric production sites that produce the SM6－24 have been assessed and judged to be in conformity with requirements in the ISO 14001 standard．
$\frac{8}{4}$
$\frac{8}{8}$
\sum

Generalities
Field of application 12
Units for all functions 14
Operating conditions 20
Main characteristics 21
Factory-built cubicles description 22
Compartments description 24
Safety of people 26
MV electrical network management 30
Fault indicators 32
Ammeter 33
Description of the control/monitoring and protection functions 34
LPCT protection chain 38
Transparent Ready 39

Field of application

The SM6-24 is made up of modular units containing fixed or withdrawable metal-enclosed SF6 switchgear, using sulphur hexafluoride (SF6) or vacuum:

- switch-disconnector

■ SF1, SFset or Evolis circuit breaker

- Rollarc 400 or 400 D contactor
- disconnector.

SM6-24 units are used for the MV section in MV/LV transformer substations in public distribution systems and MV consumer or distribution substations up to 24 kV .

MV/LV transformer substations

HV/MV substation

MV consumer substation
(MV metering)

Industrial distribution substations

Distribution switchboard

ATS: Automatic Transfer System

Connection to the networks

Fuse-switch protection

Fuse-switch combination unit QM (375 or 500 mm)

Fuse-switch unit PM (375 mm)

SF6 circuit-breaker protection

Vacuum circuit-breaker protection

MV metering

Current and/or voltage measurement unit right or left outgoing line GBC-A (750 mm)

Voltage transformers for mains with insulated neutral system CM2 (500 mm)

Current and/or voltage measurement unit GBC-B (750 mm)

Casings

Connection unit right or left outgoing line GBM (375 mm)

Other functions

page

52

Cables power supply for main incoming line and standby line
NSM-cables (750 mm)

Busbars power supply for main incoming line on right or left and cables
for standby line NSM-busbars (750 mm)

Operating conditions

In addition to its technical characteristics, SM6-24 meets requirements concerning safety of life and property as well as ease of installation, operation and protecting the environment.

SM6-24 units are designed for indoor installations.
Their compact dimensions are:
■ 375 mm to 750 mm width

- 1600 mm height
- 840 mm depth...
... this makes for easy installation in small rooms or prefabricated substations. Cables are connected via the front.
All control functions are centralised on a front plate, thus simplifying operation. The units may be equipped with a number of accessories (relays, toroids, instrument transformers, surge arrester, control and monitoring, etc.).

Standards

SM6-24 units meet all the following recommendations, standards and specifications:

■ IEC recommendations

60694: Common specifications for high-voltage switchgear and controlgear standards. 62271-200: A.C. metal-enclosed switchgear and controlgear for rated voltage above 1 kV and up to and including 52 kV .
60265-1: High voltage switches for rated voltages above 1 kV and less or equal to 52 kV . 62271-105: High voltage alternating current switch-fuse combinations.
60255: Electrical relays.
62271-100: High-voltage alternating current circuit breakers.
62271-102: High-voltage alternating current disconnectors and earthing switches.

■ UTE standards

NFC 13.100: Consumer substation installed inside a building and fed by a second category voltage public distribution system.
NFC 13.200: High voltage electrical installations requirements.
NFC 64.130: High voltage switches for rated voltage above 1 kV and less than 52 kV .
NFC 64.160: Alternating current disconnectors and earthing switches.

■ EDF specifications

HN 64-S-41: A.C. metal-enclosed swichgear and controlgear for rated voltages above 1 kV and up to and including 24 kV .
HN 64-S-43: Electrical independent-operating mechanism for switch $24 \mathrm{kV}-400 \mathrm{~A}$.

```
Designation
SM6-24 units are identified by a code including:
\squarean indication of the function, i.e. the electrical diagram code:
IM, QM, DM1, CM, DM2, etc.
■ the rated current (Ir): 400-630-1250 A
■ the rated voltage (Ur): 7.2-12-17.5-24 kV
■ the maximum short-time withstand current values (lk):
12.5-16-20-25 kA, time duration (tk) 1 s
■ Internal arc classification IAC: A-FLR,16 kA 1 s
A: Authorized personal
F: Frontal
L: Lateral
R: Rear
Value of internal arc: 16 kA
Time duration: 1 s
- the colour is of RAL }9002\mathrm{ type (frosted satin white).
Example for a unit designated: IM 400-24-12.5
■ IM indicates an "incoming" or "outgoing" unit
■ 400 indicates the rated current is 400 A
- 24 indicates the rated voltage is 24 kV
■ 12.5 indicates the short-time withstand current is 12.5 kA 1 s.
```

The hereunder values are for working temperatures from $-5^{\circ} \mathrm{C}$ up to $+40^{\circ} \mathrm{C}$ and for a setting up at an altitude below 1000 m .

Internal arc withstand:
■ standard: 12.5 kA 1 s , IAC: A-FL
■ enhanced: $16 \mathrm{kA} 1 \mathrm{~s}, \mathrm{IAC}:$ A-FLR \& IAC: A-FL in accordance with IEC 62271-200.

Protection index:

- classes: PI (insulating partition)
- loss of service continuity classes: LSC2A
- units: IP3X

■ between compartments: IP2X

- Cubicle: IK08

Electro-magnetic compatibility:

■ relays: 4 kV withstand capacity,
as per recommendation IEC 60801.4
■ compartments:
\square electrical field:

- 40 dB attenuation at 100 MHz
- 20 dB attenuation at 200 MHz
- magnetic field: 20 dB attenuation below 30 MHz .

Temperatures:

The cubicles must be stored and installed in a dry area free from dust and with limited temperature variations.
\square for stocking: from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$,

- for working: from $-5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$,

■ other temperatures, consult us.

General characteristics

Rated voltage	Ur	kV		7.2	12	17.5	24
Insulation level							
Insulation	Ud	$50 / 60 \mathrm{~Hz}, 1 \mathrm{~min}(\mathrm{kV} \mathrm{rms})$		20	28	38	50
Isolation	Ud	$50 / 60 \mathrm{~Hz}, 1 \mathrm{~min}(\mathrm{kV} \mathrm{rms})$		23	32	45	60
Insulation	Up	1.2/50 $\mathrm{\mu s}$ (kV peak)		60	$75{ }^{(1)}$	95	125
Isolation	Up	1.2/50 $\mathrm{\mu s}$ (kV peak)		70	85	110	145
Breaking capacity							
Transformer off load		A		16			
Cables off load		A		31,5			
Rated current	Ir	A		400-630-1250			
Short-time withstand current	lk/tk	(kA/1 s)	$\underline{25}$	630-1250			
			20	630-1250			
			16	630-1250			
			12.5	400-630-1250			
Making capacity	Ima	(kA)	62.5	630		NA	
			50	630			
			40	630			
			31.25	400-630			

(1) 60 kV peak for the CRM unit. NA: Non Available

Maximum breaking capacity (Isc)

(1) In 800 A, consult us. NA: Non Available

Endurance

Units		Mechanical endurance	Electrical endurance
IM, IMC, IMB, PM, QM ${ }^{(1)}, \mathbf{Q M C}{ }^{(1)}$, QMB ${ }^{(1)}$, NSM-cables, NSM-busbars		$\begin{aligned} & \text { IEC } 60265 \\ & 1000 \text { operations } \end{aligned}$ class M1	IEC 60265 100 breaks at Ir, p.f. $=0.7$, class E3
CRM	Disconnector	$\begin{aligned} & \text { IEC } 62271-102 \\ & 1000 \text { operations } \\ & \hline \end{aligned}$	
	Rollarc 400	$\begin{aligned} & \hline \text { IEC } 62470 \\ & 300000 \text { operations } \end{aligned}$	IEC 62470 100000 breaks at 320 A 300000 breaks at 250 A
	Rollarc 400D	100000 operations	100000 breaks at 200 A
SF6 circuit breaker range			
DM1-A, DM1-D, DM1-W, DM1-Z, DM1-S, DM2	Disconnector	$\begin{aligned} & \text { IEC } 62271-102 \\ & 1000 \text { operations } \\ & \hline \end{aligned}$	
	SF circuit breaker	IEC 62271-100 10000 operations class M2	IEC 62271-100 40 breaks at 12.5 kA 25 breaks at 25 kA 10000 breaks at Ir, p.f. $=0.7$, class E2
Vacuum circuit breaker range			
DMV-A DMV-D DMV-S	Switch	IEC 60265 1000 operations class M1	IEC 60265 100 breaks at Ir, p.f. $=0.7$, class E3
	Evolis circuit breaker	IEC 62271-100 10000 operations class M2	IEC 62271-100 10000 breaks at Ir, p.f. $=0.7$, class E2
DMVL-A	Disconnector	IEC 62271-102	
	Evolis circuit breaker	IEC 62271-100 10000 operations class M2	IEC 62271-100 10000 breaks at Ir, p.f. $=0.7$, class E2

(1) As per recommendation IEC 62271-105, three breakings at p.f. $=0.2$

■ 1730 A under 12 kV ■ 1400 A under 24 kV ■ 2600 A under 5.5 kV .

Factory-built cubicles description

Switch and fuse protection cubicles

Cubicles are made up of five compartments separated by metal or insulating partitions.
1 switchgear: switch-disconnector and earthing switch in an enclosure filled with SF6 and satisfying "sealed pressure system" requirements.

2 busbars: all in the same horizontal plane, thus enabling later switchboard extensions and connection to existing equipment.

3 connection: accessible through front, connection to the lower switch-disconnector and earthing switch terminals (IM cubicles) or the lower fuse-holders (PM and QM cubicles). This compartment is also equipped with an earthing switch downstream from the MV fuses for the protection units.

4 operating mechanism: contains the elements used to operate the switchdisconnector and earthing switch and actuate the corresponding indications (positive break).

5 low voltage: installation of a terminal block (if motor option installed), LV fuses and compact relay devices.
If more space is required, an additional enclosure may be added on top of the cubicle.
Options: please, refer to the chapter "Characteristics of the functional units".

SF6 circuit breaker cubicles

1 switchgear: disconnector(s) and earthing switch(es), in enclosures filled with SF6 and satisfying "sealed pressure system" requirements.

2 busbars: all in the same horizontal plane, thus enabling later switchboard extensions and connection to existing equipment.

3 connection and switchgear: accessible through front, connection to the downstream terminals of the circuit breaker.
Two circuit breaker offers are possible:
■ SF1: combined with an electronic relay and standard sensors (with or without an auxiliary power supply

- SFset: autonomous set equipped with an electronic protection system and special sensors (requiring no auxiliary power supply).

4 operating mechanism: contains the elements used to operate the disconnector(s), the circuit breaker and the earthing switch and actuate the corresponding indications.

5 low voltage: installation of compact relay devices (Statimax) and test terminal boxes. If more space is required, an additional enclosure may be added on top of the cubicle.

Options: please, refer to the chapter "Characteristics of the functional units".

Factory-built cubicles description

Frontal vacuum type circuit breaker cubicles

1 switchgear: load break switch and earthing switch(es), in enclosure filled with SF6 and satisfying and one vacuum circuit breaker, "sealed pressure system" requirements.

2 busbars: all in the same horizontal plane, thus enabling later switchboard extensions and connection to existing equipment.

3 connection and switchgear: accessible through front, connection to the downstream terminals of the circuit breaker.
■ Evolis: device associated with an electronic relay and standard sensors (with or without auxiliary source).

4 operating mechanism: contains the elements used to operate the disconnector(s), the circuit breaker and the earthing switch and actuate the corresponding indications.
5 low voltage: installation of compact relay devices (VIP) and test terminal boxes. If more space is required, an additional enclosure may be added on top of the cubicle.

Options: please, refer to the chapter "Characteristics of the functional units".

Lateral vacuum type circuit breaker cubicles

1 switchgear: disconnector(s) and earthing switch(es), in enclosure filled with SF6 and satisfying and one vacuum circuit breaker, "sealed pressure system" requirements.

2 busbars: all in the same horizontal plane, thus enabling later switchboard extensions and connection to existing equipment.

3 connection and switchgear: accessible through front, connection to the downstream terminals of the circuit breaker.

- Evolis: device associated with an electronic relay and standard sensors (with or without auxiliary source).

4 operating mechanism: contains the elements used to operate the disconnector(s), the circuit breaker and the earthing switch and actuate the corresponding indications.

5 low voltage: installation of compact relay devices (VIP) and test terminal boxes. If more space is required, an additional enclosure may be added on top of the cubicle.

Options: please, refer to the chapter "Characteristics of the functional units".

Contactor cubicles

1 switchgear: disconnector and earthing switch and contactor in enclosures filled with SF6 and satisfying "sealed pressure system" requirements.

2 busbars: all in the same horizontal plane, thus enabling later switchboard extensions and connection to existing equipment.

3 connection and switchgear: accessible through front.
This compartment is also equipped with an earthing switch downstream.
The Rollarc contactor may be equipped with fuses.
Two types may be used:
■ R400 with magnetic holding

- R400D with mechanical latching.

4 operating mechanism: contains the elements used to operate the disconnector(s), the contactor 400 or 400D and the earthing switch and actuate the corresponding indications.

5 low voltage: installation of compact relay devices and test terminal boxes. With basic equipment, an additional enclosure is added on top of the cubicle.

Options: please, refer to the chapter "Characteristics of the functional units".

Generalities

Compartments description

Busbar compartment

The three insulated busbars are parallel-mounted. Connection is made to the upper pads of the enclosure using a field distributor with integrated captive screws. Ratings 400-630-1250 A.

Switch compartment

This compartment is separated from the busbar compartment and the connection compartment by the enclosure surrounding the switch, the disconnector and the earthing switch.

SF6 and vacuum lateral type circuit breaker

Frontal vacuum type circuit breaker

Connection and switch compartment

The network cables are connected:

- to the terminals of the switch
- to the lower fuse holders
- or to the connection pads of the circuit breaker.

Cables may have either:

- cold fitted cable end for dry-type

With basic equipment, the maximum allowable cross-section for cable is:
■ $630 \mathrm{~mm}^{2}$ or $2 \times 400 \mathrm{~mm}^{2}$ for 1250 A incoming or outgoing units
■ $240 \mathrm{~mm}^{2}$ or $2 \times 240 \mathrm{~mm}^{2}$ for incoming or outgoing units $400-630 \mathrm{~A}$

- $95 \mathrm{~mm}^{2}$ for transformer protection cubicles incorporating fuses.

See in fonctional units characteristics chapter for each unit allowable section. The earthing switch must be closed before the cubicle may be accessed. The reduced depth of the cubicle makes for easy connection of all phases. A stud incorporated in the field distributor makes it possible to position and secure the cable-end lug with a single hand.

A-LV cover B-LV wiring duct
C-LV control cabinet

$\mathrm{h}=2050 \mathrm{~mm}$

Switch-disconnector

Switch or disconnector and earthing switch

■ Gas tightness
The three rotating contacts are placed in an enclosure filled with gas to a relative pressure of $0.4 \mathrm{bar}(400 \mathrm{hPa})$. It satisfies "sealed pressure system" requirements and seal tightness is always factory checked, and leakage rate is less than 0.1% for 30 years life span.

■ Operating safety

- the switch may be in one of three positions: "closed", "open", or "earthed", representing a natural interlocking system that prevents incorrect operation. Moving-contact rotation is driven by a fast-acting mechanism that is independent of the action of the operator.
\square the device combines the breaking and disconnection functions.
\square the earthing switch placed in the SF6 has a short-circuit making capacity, in compliance with standards.
- any accidental over-pressures are eliminated by the opening of the safety membrane, in which case the gas is directed toward the back of the unit, away from the operator.

Closed position

Open position

Earth position

■ Insensitivity to the environment

\square parts are designed in order to obtain optimum electrical field distribution. \square the metallic structure of cubicles is designed to withstand and aggressive environment and to make it impossible to access any energised part when in operation.

Rollarc contactor

Rollarc 400 and 400D contactor

■ Gas tightness

The three phases are placed in an enclosure filled with SF6 gas to a relative pressure of 2.5 bars (2500 hPa). It satisfies "sealed pressure system" requirements and seal tightness is always checked in the factory.

Operating safety
Accidental over-pressures are eliminated by the opening of the safety membrane.

Contacts closed

Main contacts separated

Arcing period

Contacts open

Safety of people
 By switchgear

SF6 circuit breaker: SF1 or SFset

■ Gas tightness

The SF1 or SFset circuit breaker is made up of three separate poles mounted on a structure supporting the operating mechanism. Each pole-unit houses all the active elements in an insulating enclosure filled with gas to a relative pressure of $0.5 \mathrm{bar}(500 \mathrm{hPa})$. It satisfies "sealed pressure system" requirements and seal tightness is always checked in the factory.

- Operating safety

As for switch-units, accidental over-pressures are eliminated by the opening of the safety membrane.

Contacts closed

Precompression

Arcing period

Contacts open

Vacuum type circuit breaker: Evolis
 - Gas tightness

The Evolis circuit breaker comprises three separate pole units fixed on a structure supporting the control mechanism. Each pole encloses all of the active parts in an insulating enclosure, under vacuum, and its gas tightness is systematically checked in the factory.

■ Operating safety

The magnetic field is applied along the contact axis of the vacuum type circuit breaker. This process diffuses the arc in a regular manner with high currents. It ensures optimum distribution of the energy along the compact surface so as to avoid local hot spots.
The advantages of this technique:
\square a simplified vacuum type circuit breaker which is consequently very reliable, \square low dissipation of arcing energy in the circuit breaker,
\square highly efficient contacts which do not distort during repeated breaking,
\square significant reduction in control energy.

Safety of people
 By operating mechanism safety

Visibility of main contacts (option)

Reliable operating mechanism

■ Switchgear status indicator:
Fitted directly to the drive shaft, these give a definite indication of the contact's position. (appendix A of standard IEC 62271-102).

■ Operating lever:

This is designed with an anti-reflex device that stops any attempt to re-open the device immediately after closing the switch or the earthing disconnector.

■ Locking device:

Between one and three padlocks enable the following to be locked: \square access to the switching shaft of the switch or the circuit breaker, \square access to the switching shaft of the earthing disconnector,
o operating of the opening release push-button.

Simple and effortless switching

Mechanical and electrical controls are side by side on the front fascia, on a panel including the schematic diagram indicating the device's status (closed, open, earthed): ■ Closed: the drive shaft is operated via a quick acting mechanism, independent of the operator. No energy is stored in the switch, apart from when switching operations are taking place.
For combined switch fuses, the opening mechanism is armed at the same time as the contacts are closed.

- Opening: the switch is opened using the same quick acting mechanism, operated in the opposite direction.
For circuit breakers and the combined switch fuses, opening is controlled by: - a push-button,
- a fault.

■ Earthing: a specific control shaft enables the opening or closing of the earthing contacts. Access to this shaft is blocked by a cover that can be slid back if the switch is open but which remains locked in place if it is closed.

Visibility of main contacts (option)

The position of main contacts is clearly visible from the front of the cubicle through the window.

Gas pressure indicator (option)

Despite SM6 switch is sealed pressure system and has open and close capacity on rated current at 0 bar relative pressure SF6, to insure you about the internal pressure, we propose on request before sale or on site by after-sales either a pressure switch or an analog manometer on the switch.
These devices are both fitted without any alteration on the switch, they are temperature compensated and compatible with visibility of main contacts if requested.

Voltage presence indicator

This device has integrated VPIS (Voltage Presence Indicating System) type lights, in conformity with IEC standard 61958, enabling the presence (or absence) of voltage to be checked on the cables.

Safety of people
 By internal arc protection

Standard IEC 62271-200 appendix A indicates a method for testing switchgear in metal enclosures under internal arc conditions. The aim of this test is to show that an operator situated in front of a switchboard would be protected against the effects of an internal fault.

Installation of an SM6-24 switchboard installed against the wall downwards exhaust 12.5 kA 1 s and 16 kA 1 s: 3-sides internal arc protection

Installation of an SM6-24 switchboard installed in the middle of a room upwards exhaust 16 kA 1 s: 4-sides internal arc protection

Installation of an SM6-24 switchboard installed in the middle of a room downwards exhaust 16 kA 1 s: 4-sides internal arc protection

To enhance the safety of people, it is desirable to provide as high a degree of protection as possible by evacuating the effects of internal arc using: - evacuation systems which direct gases towards the top or the bottom of the switchboard enabling over pressure to be limited in the case of an internal fault in the compartments

- channelling and evacuating hot gases towards an external area, which is not hazardous for the operator
■ materials which are non-inflammable in the cubicles
- reinforced panels.

Consequently:

The SM6-24 is designed to offer a good level of safety
■ Control of the architecture:

- compartment type enclosure.
- Technological control:
\square electrotechnical: modelling of electrical fields,
\square mechanical: parts produced using CAD systems.
■ Use of reliable components:
\square choice of materials,
\square earthing switch with closing capacity.
■ Devices for total operating safety:
\square voltage presence indicator on the front face,
\square natural reliable interlocking,
\square locking using keys or padlocks.

Internal arc withstand of the cubicles

■ 2 versions are available:

- basic version: 12.5 kA 1 s , IAC: A-FL
\square enhanced internal arc withstand: $16 \mathrm{kA} 1 \mathrm{~s}, \mathrm{IAC}:$ A-FL or IAC: A-FLR.

SM6-24 internal arc
 (in conformity with IEC 62271-200 appendix A)

In its internal arc version, the SM6-24 has successfully passed all of the type testing relative to standard IEC 62271-200 (5 acceptance criteria).
The materials used meet the constraints for which the SM6-24 is designed. The thermal and mechanical forces that an internal arc can produce are perfectly absorbed by the enclosure.
An operator situated in the front of the SM6-24 switchboard during an internal fault will not be exposed to the effects of arcing.

SM6-24 proposes several options to install an internal arc enhanced switchboard

■ 3-sides internal arc protection IAC: A-FL, $12,5 \mathrm{kA} 1 \mathrm{~s}, 16 \mathrm{kA} 1 \mathrm{~s}$
SM6-24 switchboard positioned against the wall, access to the rear of the cubicles is impossible, internal arc protection on three sides is sufficient. ■ 4-sides internal arc protection IAC: A-FLR, 16 kA 1 s
For SM6-24 switchboards installed in the middle of a room, 4-sides internal arc protection is necessary in order to protect an operator moving around the switchboard.

Choice of exhaust

The choice depends on the civil engineering:
■ Upwards exhaust:
A ceiling height greater or equal than 2800 mm is necessary.

- Downwards exhaust:

Civil engineering with an adequate volume is necessary.

Generalities

MV electrical network management

Easergy T200 S: remote control interface in LV control cabinet

Easergy T200 S is a simplified MV substation control unit for secondary distribution networks enabling remote control of one or two MV substation switches. T200 S, a version of the T200 I unit, is integrated in the SM6-24 cubicle LV control cabinet.
It is limited to control 2 switches. It is intended for remote control applications for source transfer switching and back up generator set switching in NSM cubicle.

Easergy T200 S a multifunctional "plug and play" interface which integrates all functions required for remote monitoring and control of MV substations:
■ acquisition of various data types: switch position, fault detectors, current values, etc.

- transmission of opening and closing orders to the switches
- exchange with the control center.

Particularly used during network incidents, Easergy T200 S has proven its reliability and availability to be able to operate the switchgear at all times. It is easy to implement and operate.
Functional unit dedicated to Medium Voltage applications
Easergy T200 S is installed in the low voltage control cabinet of IM and NSM cubicles for remote control of one or two switches.
Easergy notably enables source transfer switching between two switches. It has a simple panel for local operation to manage electrical controls (local/remote switch) and to display switchgear status information.
It integrates a fault current detector (overcurrent and zero sequence current) with detection thresholds configurable channel by channel (threshold and fault duration).
"Plug and play" and secure
Integrated in the low voltage control cabinet of an MV-equipped cubicle, it is ready to connect to the data transmission system.
Easergy T200 S has been subject to severe tests on its resistance to MV electrical constraints. A back-up power supply guarantees several hours continuity of service for the electronic devices, motorization and MV switchgear.
Current transformers are of split core type for easier installation.

Compatible with all SCADA remote control systems

Easergy T200 S supplies the following standard protocols:
Modbus, DPN3.0 level 2 and IEC 870-5-101.
Data transmission system standards are: RS232, RS485, PSTN, FSK.
Other systems are available on request, the radio frequency emitter/receiver is not supplied.

Control command

Local information

Power unit

Split core CTs

Back up power supply

MV electrical network management (cont.)

Easergy T200 I: an interface designed for telecontrol of MV networks

Easergy T200 I is a "plug and play" or multifunction interface that integrates all the functional units necessary for remote supervision and control of the SM6-24:

- acquisition of the different types of information: switch position, fault detectors, current values...
■ transmission of switch open/close orders
- exchanges with the control center.

Required particularly during outages in the network, Easergy T200 I is of proven reliability and availability, being able to ensure switchgear operation at any moment. It is simple to set up and to operate.

Local information and control

Monitoring and control

Functional unit designed for the Medium Voltage network

- Easergy T200 I is designed to be connected directly to the MV switchgear, without requiring a special converter.
- It has a simple front plate for local operation, which allows management of electrical rating mechanisms (local/remote switch) and display of information concerning switchgear status.
■ It has an integrated MV network fault current detection system (overcurrent and zero sequence) with detection set points that can be configured channel by channel (current value and fault current duration).

Back up power supply

Polarized connectors

Medium Voltage switchgear operating guarantee

■ Easergy T200 I has undergone severe MV electrical stress withstand tests.
■ It is a backed up power supply which guarantees continuity of service for several hours in case of loss of the auxiliary source, and supplies power to the Easergy T200 I and the MV switchgear motor mechanisms.

- Ready to plug
\square Easergy T200 I is delivered with a kit that makes it easy to connect the motor mechanisms and collect measurements.
- the telecontrol cabinet connectors are polarized to avoid any errors during installation or maintenance interventions.
\square current measurement acquisition sensors are of the split type, to facilitate their installation.
- works with 24 Vdc and 48 Vdc motor units.

Easergy Flair is a comprehensive range of underground network fault current indicators

Easergy MV underground network fault current passage indicators are a range of products adapted to all neutral earthing systems: insulated, impedant and direct earthing.

- Easergy Flair 21D-22D-23D, are self-powered with a liquid crystal display,
with DIN dimensions for MV cubicle installation.
- Easergy Flair 279 and 219, have a wall-mounted case for the MV cubicles substation or LV compartment and anexternal power supply which can be backed up.
■ Easergy Flair 200C (communicative), has the same case as Flair 279 and 219,
but has advanced measurement functions and long distance communication features (radio, GSM, RTC, etc.).

Easergy Flair	21D-22D-23D	279-219	200C
Usage			
	Underground MV networks, open loop, insulated, impedant and direct neutral earthing systems.		
Installation			
	Flush fitted	Casing	Casing
Power supply			
	Self-powered or dual power	230 Vac or battery	230 Vac
Fault detection			
	Phase-phase and phase-earth for all 3 ranges		
Indication			
	LCD display	Indicator light	Indicator light (option)
Measurement			
	Current, frequency		Current, voltage, power
Communication			
	SCADA interface by dry contact	SCADA interface by dry contact	Long distance (radio, PSTN, GSM, etc.)

Easergy Flair 21D-22D - 23D

SM6-24 integrates Flair 21D, Flair 21DT, Flair 22D and Flair 23D on every incoming cubicles.

■ High performance indicators

\square indication of phase-phase and phase-earth faults,
\square faulty phase indication,

- compatible with HV/MV substation protection devices.

$■$ Clear and comprehensive display

- displaying the faulty phase for earth fault,
\square displaying settings,
\square displaying the load current including peak demand and frequency meter.
■ Maintenance free.

		Flair 21D	Flair 21DT	Flair 22D	Flair 23D
Power supply					
	Self-powered	\square	\square	\square	\square
	Dual power supply			■ (battery)	- (external)
Display					
	Ammeter	■	■	\square	\square
	Peak demand			\square	\square
	Frequency meter			■	■
Options					
	SCADA interface	- (transistor output)	\square	\square	\square
	External light	-	-	\square	\square
	External reset			\square	\square
	Advanced settings (keypad)			\square	\square

- At the leading edge of technology, Amp 21 is suitable for Medium Voltage network load management.
■ Self-powered, it ensures a permanent display of currents.
■ Compact and in DIN format, it fits naturally into MV cubicles.
■ Cost efficient, it uses the CT optimised for Fault Passage Indicator.
- Performant, it displays phase current and maximum of current.

The SM6-24 integrates ammeter Amp 21D on all incoming cubicles and the fuse-switch cubicles

Easergy Amp 21D is an ammeter dedicated to display the load current on a Medium Voltage network.
It is particularly suited for network load management application.

Functions

■ Display of 3 phase current: 11 , 12 , I3. Range: 3 A to 800 A
■ Display of 3 phase current maximeter: I1, I2, I3. Range: 3 to 800 A.

Display principle

■ Load curents are permanently displayed

- continuous scrolling of L1, then L2, then L3.
- Maximeter
\square access to maximeter display by pressing a dedicated push button
\square continuous scrolling of M1, then M2, then M3
\square reset of all maximeter by pressing a combination of two push buttons.

Assembly

Small size enclosure

■ DIN format : $93 \times 45 \mathrm{~mm}$

- Secured, extraction-proof mounting
- Terminal connections.

Technical data

Application		
Frequency		50 Hz and 60 Hz
Load current	Minimum current	$>3 \mathrm{~A}$
Measurement		
Range	Phase current	3 to 800 A
	Accuracy (< 630A)	$\pm 5 \%, \pm 2 \mathrm{~A}$
Reset of maximeter	Manual from device	Yes
Power supply		
Self power	From the current sensors	\| load > 3 A
Battery		No
Auxiliary supply		No
Display		
	Display	4 digits LCD
	Current per phase	Yes (resolution 1A)
	Maximeter per phase	Yes
Sensors		
	Phase CTs	3 split core CT
Miscellaneous		
	Test	Yes
Characteristics		
Dielectric	IEC 60255-5	
Electromagnetic	$\begin{aligned} & \text { IEC 61000-4-4 (level 4) } \\ & \text { IEC 61000-4-12 } \end{aligned}$	Insulation 10 kV Shock wave 20 kV
Climatic	Operating temperature Storage temperature Salt fog	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & 200 \mathrm{~h} \end{aligned}$
Mechanical	$\begin{aligned} & \text { IEC 60068-2-6 } \\ & \text { IEC 60068-2-29 } \end{aligned}$	Vibrations 10 to $500 \mathrm{~Hz}: 2 \mathrm{~g}$ Protection IP23

Generalities

Description of the control/ monitoring and protection functions

The Sepam range of protection and metering is designed for the operation of machines and electrical distribution networks of industrial installations and utility substations for all levels of voltage.
It consists of complete, simple and reliable solutions, suited to following four families:

- Sepam series 10 ,

■ Sepam series 20 ,

- Sepam series 40,
- Sepam series 80 .

Sepam protection relay

A range adapted at your application

- Protection of substation (incoming, outgoing line and busbars).
- Protection of transformers.
- Protection of motors, and generators.

Accurate measurement and detailed diagnosis

- Measuring all necessary electrical values.
- Monitoring switchgear status: sensors and trip circuit, mechanical switchgear status.
- Disturbance recording.
- Sepam self-diagnosis and watchdog.

Simplicity

Easy to install

- Light, compact base unit.
- Optional modules fitted on a DIN rail, connected using prefabricated cords.
- User friendly and powerful PC parameter and protection setting software to utilize all of Sepam's possibilities.

User-friendly

- Intuitive User Machine Interface, with direct data access.
- Local operating data in the user's language.

Fexibility and evolutivity

- Enhanced by optional modules to evolve in step with your installation.
- Possible to add optional modules at any time.
- Simple to connect and commission via a parameter setting procedure.

Sepam	Characteristics	Protections	Applications				
		Basic			$\begin{aligned} & \bar{\circ} \\ & \text { L̀ } \end{aligned}$		
		Specific					
Sepam series 10 For simple applications	4 logic inputs 7 relay outputs 1 communication port	Phase-overcurrent and earth fault protection	$\begin{aligned} & 10 A \\ & 10 B \end{aligned}$	$\begin{aligned} & \text { 10A } \\ & \text { 10B } \end{aligned}$			
Sepam series 20 For common applications	- 10 logic inputs - 8 relay outputs - 1 Modbus communication port	Current protection	S20	T20	M20		
		Voltage and frequency protection					B21
		Loss of mains (ROCOF)					B22
Sepam series 40 For demanding applications	- 10 logic inputs - 8 relay outputs - 1 Modbus communication port - Logic equations editor	Current voltage and frequency protection	S40 S41	T40	M41	G40	
		Directional earth fault and phase overcurrent	S42	T42			
Sepam series 80 For complete applications	- 42 logic inputs- 23 relay outputs- Modbus communication port- Logic equations editorRemoval memory cartridge- Battery to save eventlogging data	Current voltage and frequency protection	S80				
		Directional earth fault	S81	T81	M81		
		Directional earth fault and phase overcurrent	S82	T82		G82	

Description of the control/ monitoring and protection functions

VIP 35

VIP 35 relay for transformer protection

Integrated in the DM1-S and DMV-S cubicles

The VIP 35 is an independent relay without an auxiliary power supply, powered by the current sensors, and actuating a Mitop release unit.
VIP 35 provides protection against phase-to-phase faults and against earthing faults.

Phase protection

- phase protection is achieved by a definite time threshold which functions from 1.2 times the operating current (Is).

Earthing protection

■ earthing fault protection functions with the residual current measurement taken
from the sum of the secondary currents in the sensors. This is taken via a CRc,
8 A to 80 A gauge.
\square earthing protection is inverse definite time: its threshold and time delay can be set.
Setting the VIP 35 relays
Is: the phase operating current is adjusted directly in accordance with the transformer rating and the operating voltage.
lo: the earth current threshold is adjusted according to the network characteristics.
Setting values of the Is phase operating current for VIP 35

Operating voltage (kV)	Transformer rating (kVA)																	
	50	75	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3000
3	10	15	20	25	36	45	55	68	80	140	140	170	200					
3.3	10	15	18	22	28	36	45	56	70	90	140	140	200					
4.2	8	12	15	18	22	28	36	45	56	70	90	140	140	200				
5.5		8	12	15	18	22	28	36	46	55	68	90	140	140	200			
6			10	12	18	20	25	36	46	55	68	80	140	140	200	200		
6.6			10	12	15	18	22	28	36	45	56	70	90	140	140	200		
10				8	10	12	15	20	25	30	37	55	68	80	140	140	170	200
11					10	12	15	18	22	28	36	45	55	68	90	140	140	170
13.8					8	10	12	15	18	22	28	36	46	55	68	90	140	140
15						8	10	15	18	20	25	36	45	55	68	80	140	140
20							8	10	12	15	20	25	30	37	55	68	80	140
22							8	10	12	15	18	22	28	36	45	55	68	80

VIP 300 LL

VIP 300 LL protection relay

Integrated in the DM1-S and DMV-S cubicles
VIP 300 provides protection against phase-to-phase and phase-to-earth faults.
A choice of trip curves and the large number of possible settings mean that it can be used in a large variety of selectivity layouts.
VIP 300 is an independent relay powered by the current sensors; it does not require an auxiliary power supply. It actuates a release unit.

Phase protection

- phase protection is via two independently adjustable thresholds:
\square the lower threshold can be chosen to be inverse definite time or definite time.
The definite time curves are in conformity with IEC standard 60255-3.
They are either of inverse, very inverse or extremely inverse type.
\square the upper threshold is inverse definite time.

Earthing protection

■ protection against phase-to-earth faults uses the residual current measurement, taken from the sum of the secondary currents in the sensors. This is taken via a CRa X1 gauge: 10 to 50 A and X4: 40 to 200 A or via a CRb X1 gauge: 63 to 312 A and X4: 250 A to 1250 A.
■ as for phase protection, phase-to-earth protection had two thresholds
that can be independently set.

Signalling

■ two indicators show the origin of the trip operation (phase or earth).
They remain in position after the relay power supply has been cut. two led indicators (phase and earth) show that the lower threshold has been exceeded and that its time delay is currently in progress.

Description of the control/ monitoring and protection functions

Sepam series 10

Sepam series 10 with $C R a / C R b$ sensors for transformer protection

Integrated in the DM1-S cubicle

Sepam series 10 monitors phase and/or earth-fault currents.
Two models meet a wide range of different needs:
■ 10B: Sepam series 10B protects against overloads, phase-to-phase faults and earth faults.

- 10A: Sepam series 10A provides the same functions as model B, but with a communication port, more inputs and outputs, and additional protection and monitoring functions.
Setting of Sepam series 10
Is: the phase operating current is adjusted directly in accordance with the transformer rating and the operating voltage.
Io: the earth current threshold is adjusted according to the network characteristics.
Setting values of the Is phase operating current for Sepam series 10

Description of the control/ monitoring and protection functions

Current sensor for VIP 35 and VIP 300LL and Sepam series 10

CRa, CRb, CRc current sensor

General common selection of protection units

Protection type	Code	Protection units						
		Sepam series 10	series 20	series 40	series 80	Statimax	$\begin{aligned} & \text { VIP } \\ & 35 \end{aligned}$	300
Three-phase overcurrent	50-51	\square	\square	\square	\square	\square	$\square \square^{(2)}$	$\square{ }^{(1)}$
Zero-sequence overcurrent	50N-51N	\square	\square	\square	\square	\square	$\square{ }^{(3)}$	$\square{ }^{(1)}$
Directional zero-sequence current	67 N			\square	\square			
Undervoltage	27			\square	\square			
Overvoltage	59			\square	\square			
Thermal image	49	\square	\square	\square	\square			
Zero-sequence overvoltage	59N			\square	\square			
Negative sequence overcurrent	46		\square	\square	\square			
Long start-up and rotor blocking	51LR		\square	■	\square			
Maximum number of start-ups	66		\square	\square	\square			
Single-phase undercurrent	37		\square	\square	\square			
Communication		\square	\square	\square	\square			

(1) DT, EI, SI, VI and RI trip curves.
(2) Inverse curve suited to transformer protection.
(3) DT trip curve.

LPCT protection chain
TLP1 30, CLP2 sensors and Sepam
series 20 , series 40 protection units

Generalities

Sepam series 20 , series 40 protection unit

LPCT sensors are voltage-output current sensors (Low Power Current Transformer) compliant with the IEC 60044-8 standard.
These sensors are designed to measure rated current between 5 A and 630 A , with a ratio of $100 \mathrm{~A} / 22.5 \mathrm{mV}$.
Sepam series 20 , series 40 protection units are at the heart of the LPCT protection chain.
Sepam series 20 , series 40 performs the following functions:

- acquisition of phase currents measured by the LPCT sensors
- utilization of measurements by the protection functions
- tripping of the breaking device in case of fault detection.

Advantages

- Consistent protection chain with the same sensor measures phase currents from 5 A to 630 A
- Simple to install and implement:
- installation of LPCT sensors
- TLP130 is installed around MV cable
- CLP2 is installed on the MV circuit
\square LPCT connected directly to Sepam series 20, series 40
\square accessories available to test the LPCT protection chain by secondary current injection.
- LPCTs range of use

LPCT measuring and protection function guaranteeing the accuracy up to the short-time current.
Following the range of use of LPCT:
\square from 5 A up to 1250 A respecting the error limits imposed by the accuracy class 0,5
\square from 1250 A up to 50 kA respecting the error limits imposed by the accuracy class 5P.

■ Optimized integration of functions:
\square measurement of phase rated currents as of 25 A that is set by micro-switch \square monitoring of LPCT sensor by Sepam series 20, series 40 (detection of phase loss).

Connections

1 LPCT sensor, equipped with a shielded cable fitted with an RJ45 connector to be connected directly to the CCA670 connector

2 Sepam series 20 , series 40 protection unit

3 CCA670 connector, interface that adapts the voltage delivered by the LPCT sensors, with microswitch setting of rated current.

Testing and injection

4 CCA613 remote test plug, flush-mounted in front panel of cubicle, equipped with a 3-m cord to be connected to the CCA670 connector test socket (9-pin Sub D)
5 ACE917 injection interface, used to test the LPCT protection chain with a standard injection box
6 Standard 1A injection box.

SM6 Transparent Ready with front face Intranet connector

Description

The SM6-24 supports all possible MV distribution substations and network configurations. It meets all the standard requirements with respect to continuity of supply and energy availability from 1 to 24 kV .
The EGX400 Web server integration is industrialised for SM6-24 Transparent Ready offer:

- the DM range of circuit breakers cubicles with Sepam series 20 and one EGX400 per switchboard for remote monitoring via the Intranet
- an RJ45 Ethernet connector on the front of the switchboard, directly accessible from the front panel (option).
For other SM6-24 configurations (with other devices or other Sepam product ranges),
it is possible to integrate Transparent Ready capability, consult your local Schneider Electric correspondent.

Range selection

This chart presents the different SM6-24 cubicles proposed with an industrialised Transparent Ready system.

Description	Type of units
Single-isolation circuit breaker unit	DM1-A
Single-isolation circuit breaker unit, right or left outgoing line	DM1-D
Withdrawable single-isolation circuit breaker unit	DM1-W (up to 24 kV)
Withdrawable single-isolation circuit breaker unit, right outgoing line	DM1-Z (up to 24 kV)
Double-isolation circuit breaker unit, right or left outgoing line	DM2
EGX400 summary pages	A- RMS, three-phase average level
Current	kW - Present and peak demand - Peak is time stamped by Sepam when available - Signed
Real power	
Power factor	A-RMS - Actual load
Load current, three phases A B C	A - Avg - After integration period
Demand current, three phases A B C	kWh kvarh - Last reset date is the date the user starts the energy counting - Signed
Active and reactive energy, last reset date	
Circuit breaker status	open - closed - tripped

Typical design

You need to have a Web server in only one CB unit to monitor the whole switchboard.

(1) Same cable CCR301 for RS 485 and PSU 24 VDC
Characteristics of the functional units
Functional units selection 42
Automatic Transfer System 56
Network remote control and monitoring 58
Operating mechanisms 59
Auxiliaries 62
Current transformers 64
Voltage transformers 66
Protection of transformers 68
Motors protection with CRM units 70
Interlocks 71

Functional units selection

Network connection

IM (375 ou 500 mm$)$
Switch

IMC (500 mm)
Switch

Electrical characteristics

Basic equipment:

■ switch and earthing switch

- three-phase busbars
- CIT operating mechanism
- voltage presence indicator
- connection pads for dry-type cables
- three-phase bottom busbars for outgoing lines (right or left)
one to three CTs

IMB (375 mm)
Switch
with earthing switch
Right or left outgoing

Characteristics of the functional units

Functional units selection

Fuse-switch protection

QM (375 or 500 mm)
Fuse-switch
combination unit

QMC (625 mm)
Fuse-switch
combination unit

QMB (375 mm)
Fuse-switch
combination unit Outgoing line right or left

Electrical characteristics

Basic equipment:

- switch and earthing switch
- three-phase busbars
- Cl1 operating mechanism
- voltage presence indicator
- equipment for three UTE or DIN striker fuses
- mechanical indication system for blown fuses
- connection pads for dry-type cables
- downstream earthing switch 2 kA rms making capacity
- three-phase bottom busbars for outgoing lines (right or left)

Version:

- Cl2 operating mechanism

Optional accessories:

- motor for operating mechanism
- auxiliary contacts

■ additional enclosure or connection enclosure for cabling from above

- key-type interlocks
- 50 W heating element
- plinth
- indication contact for blown fuses
- UTE or DIN striker fuses
- release units (coil)
- digital ammeter
- visibility of main contacts
- pressure indicator device
- 1250 A three-phase upper busbars

Functional units selection

Fuse-switch protection

PM (375 mm)
Fused-switch unit

Electrical characteristics

Basic equipment:

■ switch and earthing switch

- three-phase busbars
- CIT operating mechanism
- voltage presence indicator
- connection pads for dry-type cables
- downstream earthing switch 2 kA rms making capacity
- equipment for three UTE or DIN fuses

Optional accessories:

```
- motor for operating mechanism
- auxiliary contacts
■ enlarged low-voltage control cabinet
- additional enclosure or connection enclosure for cabling from above
\square key-type interlocks
-50 W heating element
- plinth
- mechanical indication system for blown fuses
- UTE or DIN fuses
- digital ammeter
- visibility of main contacts
- pressure indicator device
- 1250 A three-phase upper busbars
```

Functional units selection Contactor protection

CRM (750 mm)
Contactor

CRM (750 mm)
Contactor with fuses

Electrical characteristics

Basic equipment:

- Rollarc 400 or 400D contactor
- disconnector and earthing switch
- three-phase busbars
- contactor operating mechanism R400 with magnetic holding or contactor R400D with mechanical latching disconnector operating mechanism CS
- one to three current transformers
- auxiliary contacts on contactor
- connection pads for dry-type cables
- voltage presence indicator
- downstream earthing switch 2 kA rms making capacity
- additional enclosure
- operation counter
- equipment for three DIN fuses

Optional accessories:

■ cubicle:

\square auxiliary contacts on the disconnector
\square protection using Sepam programmable electronic unit
\square one to three voltage transformers

- key-type interlocks
- 50 W heating element
\square plinth
$\square 1250$ A three-phase upper busbars
- contactor:
\square mechanical interlocking

Characteristics of the functional units

DM1-A (750 mm)
Disconnectable single-isolation circuit breaker

DM1-D (750 mm)
Single-isolation disconnectable CB
Outgoing line on right

DM1-D (750 mm)
Single-isolation
disconnectable CB
Outgoing line on left

Electrical characteristics

Basic equipment:

■ SF1 circuit breaker disconnectable

- disconnector and earthing switch
- three-phase busbars
- circuit breaker operating mechanism RI
- disconnector operating mechanism CS
- voltage presence indicator
- three CTs for SF1 circuit breaker
- auxiliary contacts on circuit breaker
- connection pads for dry-type cables
three-phase bottom busbars
downstream earthing switch 2 kA rms at 630 A
and 25 kA rms at 1250 A making capacity

Version:

- LPCT (only with Sepam series 20, series 40)

Optional accessories:

\square cubicle:	\square circuit breaker:
\square auxiliary contacts on the disconnector	\square motor for operating mechanism
\square additional enclosure or connection enclosure for cabling from above	\square release units (coil)
\square protection using Statimax relays, or Sepam programmable electronic unit	\square operation counter on manual operating mechanism
for SF1 circuit breaker	
\square three voltage transformers for SF1 circuit breaker	
\square key-type interlocks	
$\square 50$ W heating element	
\square plinth	
\square surge arresters	
$\square 1250$ A three-phase upper busbars at $\operatorname{lr} 630 \mathrm{~A}$	

Functional units selection
SF6 type circuit breaker protection

DM1-S (750 mm)
Single-isolation
disconnectable CB
with independent protection

DM2 (750 mm)
Double-isolation
disconnectable CB
Outgoing line on right

DM2 (750 mm)
Double-isolation disconnectable CB
Outgoing line on left

Electrical characteristics

Basic equipment:

- SF1 circuit breaker disconnectable
- disconnector and earthing switch
- three-phase busbars
- circuit breaker operating mechanism RI
- disconnector operating mechanism CS
- auxiliary contacts on circuit breaker
- VIP relay
- three CTs
- three CR sensors for VIP relay protection
- voltage presence indicator
- connection pads for dry-type cables
- downstream earthing switch 2 kA rms making capacity

Version:

- Sepam series 10 with auxiliary supply and three CR sensors

Optional accessories:

- cubicle:

\square additional enclosure or connection enclosure for cabling from above

- three voltage transformers
- key-type interlocks
$\square 50 \mathrm{~W}$ heating element
\square plinth
ㅁ 1250 A three-phase upper busbars at Ir 630 A

■ circuit breaker:

\square motor for operating mechanism
\square release units (coil)
\square operation counter on manual operating mechanism

Characteristics of the functional units

Functional units selection
 SF6 type circuit breaker protection

DM1-W (750 mm)
Withdrawable single-isolation circuit breaker

DM1-Z (750 mm)
Withdrawable single-isolation
circuit breaker
Outgoing line on right

Electrical characteristics

Basic equipment:

- SF1 withdrawable circuit breaker
- disconnector and earthing switch
- three-phase busbars
- circuit breaker operating mechanism RI
- disconnector operating mechanism CS
- voltage presence indicator
- three CTs
- auxiliary contacts on circuit breaker
- earthing switch operating mechanism CC
- connection pads for dry-type cables
- downstream earthing switch 25 kArms making capacity
- three-phase busbars

Version:

LPCT (only with Sepam series 20, series 40)

Optional accessories:

\square cubicle:	\square circuit breaker:
\square auxiliary contacts on the disconnector	\square motor for operating mechanism
\square additional enclosure or connection	\square release units (coil)
enclosure for cabling from above	\square operation counter on manual operating mechanism
\square protection using Statimax relays	
or Sepam programmable electronic unit	
\square three voltage transformers	
\square key-type interlocks	
$\square 50$ W heating element	
\square plinth	
\square withdrawable circuit breaker cradle (if there is plinth)	
$\square 1250$ A three-phase upper busbars at $\operatorname{lr} 630$ A	
\square surge arresters	

Functional units selection

 Vacuum type circuit breaker protectionDMV-A (625 mm)
Single-isolation disconnectable circuit breaker

DMV-D (625 mm)
Single-isolation
circuit breaker
Outgoing line on right

Electrical characteristics

DMV-S (625 mm)
Single-isolation
circuit breaker
with independent protection

DMVL-A (750 mm)
Single-isolation
disconnectable
circuit breaker

Basic equipment:

- Evolis circuit breaker frontal
- switch and earthing switch for 400-630 A
- disconnector and earthing switch for 1250 A
- three-phase busbars
- circuit breaker operating mechanism Proxima
- disconnector and switch operating mechanism CIT

■ voltage presence indicator

- auxiliary contacts on circuit breaker
- 3 CTs

Sepam series 20 programmable electronic unit

- connection pads for
dry-type cables
- downstream earthing
switch 25 kA rms making capacity
- 3 CR sensors for VIP relay

■ VIP protection relay

- connection pads for dry-type cables
- downstream earthing switch

25 kA rms making capacity

Evolis circuit breaker lateral
disconnectable

- disconnector and earthing switch
- three-phase busbars
- circuit breaker operating mechanism

RI

- disconnector operating mechanism CS
- voltage presence indicator
- auxiliary contacts on circuit breaker
- 3 CTs
downstream earthing switch
2 kA rms making capacity

Optional accessories:

\square cubicle:	\square circuit breaker:
\square auxiliary contacts on the disconnector	\square motor for operating mechanism
\square additional enclosure or connection enclosure	\square release units (coil)
for cabling from above	\square operation counter on manual operating mechanism
\square three voltage transformers	
\square key-type interlocks	
\square plinth (only 630 A)	
$\square 50$ W heating element	
$\square 1250$ A three-phase upper busbars at $\operatorname{lr} 630$ A	

[^0]
Functional units selection
 MV metering

CM (375 mm)
Voltage transformers
for mains with earthed
neutral system

CM2 (500 mm)
Voltage transformers for mains with insulated neutral system

Electrical characteristics

Basic equipment:

■ disconnector and earthing switch

- three-phase busbars
- operating mechanism CS
- LV circuit isolation switch
- LV fuses
- three 6.3 A UTE or DIN type fuses
- three-voltage transformers
- two voltage transformers (phase-to-phase)

Optional accessories:

- auxiliary contacts
- additional enclosure or connection enclosure for cabling from above
- 50 W heating element
- plinth
- mechanical signalling for blown fuses

■ 1250 A three-phase upper busbars

Functional units selection MV metering

GBC-A (750 mm)
Current and/or voltage
measurements
Outgoing line on right

GBC-A (750 mm)
Current and/or voltage
measurements
Outgoing line on left

GBC-B (750 mm)
Current and/or voltage
measurements

Electrical characteristics

Basic equipment:

- one to three CTs
- connection bars
- three-phase busbars

Optional accessories:

- additional enclosure
- three voltage transformers (phase-to-earth), or two voltage transformers (phase-to-phase)
- plinth
- 1250 A three-phase upper busbars at $\operatorname{Ir} 630 \mathrm{~A}$

Functional units selection

Casings

GEM (125 mm)
Extension unit VM6/SM6

GIM (125 mm)
Intermediate bus unit

GBM (375 mm)
Connection unit
Outgoing line right or left

Basic equipment:

three-phase busbars

- connection bars
- three-phase busbars for outgoing lines right or left

Optional accessories:
■ plinth
additional enclosure
■ 1250 A three-phase upper busbars
at Ir 630 A

Functional units selection Casings

GAM2 (375 mm)
Incoming-cable-connection unit

Electrical characteristics

GAM (500 mm)
Incoming-cable-connection unit

Basic equipment:

- three-phase busbars
- voltage presence indicator
- connection pads for dry-type cables
- connection bars
operating mechanism CC
- downstream earthing switch 25 kA rms making capacity

Optional accessories:

■ enlarged low-voltage control cabinet

- plinth
- 50 W heating element
- fault indicator
- digital ammeter
- 1250 A three-phase upper busbars at $\operatorname{Ir} 630 \mathrm{~A}$

```
- auxiliary contacts
- surge arresters
- key-type interlocks
```


Characteristics of the functional units

Functional units selection

Other functions

SM (375 or 500 ${ }^{(1)} \mathrm{mm}$)
Disconnector unit

Electrical characteristics

TM (375 mm)
MV/LV transformer unit
for auxiliaries

EMB (375 mm)
Busbars earthing
compartment

Basic equipment:

\square disconnector and earthing switch

- three-phase busbars
- operating mechanism CS
- connection pads for dry-type cables
- voltage presence indicator
- two 6.3 A fuses, UTE or DIN type
- LV circuit isolating switch
- one voltage transformer
(phase-to-phase)

Optional accessories:

- auxiliary contacts

■ additional enclosure

- key-type interlocks
- plinth
- 50 W heating element
- 1250 A three-phase upper busbars at Ir 630 A
- connection enclosure for cabling from above
digital ammeter

[^1]> earthing switch connection bars operating mechanism CIT installation on 630 A IM 375 mm or DM1-A units (except additional enclosure or connection enclosure for cabling from above) require an key-type interlocks adapted to the switchboard network auxiliary contacts

Functional units selection Change over

NSM-cables (750 mm)
Cables power supply for main incoming line (N) and standby line (S)

NSM-busbars (750 mm)
Cables power supply for main incoming line on left (N) and busbars for standby line (S) on right

NSM-busbars (750 mm)
Busbars power supply for main incoming line on left (N) and cables for standby line (S) on right

Electrical characteristics

Basic equipment:

```
■ switches and earthing switches
\square three-phase busbars
■ connection pads for dry-type cables
\square voltage presence indicator
\square mechanical interlocking
\square motorised operating mechanism Cl2 with open/close coils
■ additional enclosure
\square automatic-control equipment (T200 S)
```


Optional accessories:

- auxiliary contacts

- key-type interlocks
- 50 W heating element
- plinth
- telecontrol

■ visibility of main contacts

- pressure indicator device
- 1250 A three-phase upper busbars

Characteristics of the functional units

Automatic Transfer System With NSM unit

TR: transfer switch response time (< 180 ms - depending on switchgear).
■ Setting of time delay before switching: configurable from 0.1 s to $\mathbf{2 s}$ (T1) with step of 100 ms .

- Setting of time delay for return to the initial state: configurable from 5 s to $\mathbf{1 2 0} \mathbf{s}$ (T2) with step of 5 s .
- Transfer switch configurable with $\mathrm{SW} 1 \rightarrow \mathrm{SW} 2$ or $\mathrm{SW} 2 \rightarrow \mathrm{SW} 1$.

Note: in bold = default configuration.

Generator back up

TR: transfer switch response time (< 180 ms - depending on switchgear).
■ Setting of time delay before switching to the generator: configurable from 1 s to $\mathbf{1 5} \mathbf{s}$ (T1) with step of 1 s .
\square Start up of the generator (T2), depending on kind of
generator, not configurable (time max. to wait: 30 s).
■ Switching when the generator voltage is present.
■ Setting of time delay for return to the initial state: configurable
from 60 s to 120 s with step of 5 s (T3).

- Stopping the generator 6 s after switching.

Note: in bold = default configuration.

Transfer switch (ACO 1/2)

ACO: Automatic Change-Over
The transfer switch automatic control system gives automatic control and management of sources in the MV secondary distribution network with voltage presence detectors.

Operating modes

Operating mode is selected using the Easergy T200 S configuration tool.

■ Semi-Auto mode, SW1 \longleftrightarrow SW2

When the voltage disappears on the channel in service, the automatic control switches to the other channel after a time delay T1. The automatic control does not switch back, unless there is a voltage break on the new channel in service.
$■$ Mode SW1 \rightarrow SW2, (SW2 \rightarrow SW1)
The automatic control only switches once from channel 1 or 2 to the back up channel. ■ Mode Auto-SW1 or Auto-SW2
Channel 1 or 2 is priority if its MV voltage is OK. After switching to the back up channel, the mode switches back to the priority channel if the MV voltage on this channel is OK for a period T2.

- Transfer time SW1 \rightarrow SW2 for all modes

It is between 0.34 s to 2.24 s depending on the set values.

Switching sequence

■ Switching takes place if the following conditions are fulfilled:
\square automatic control on
\square SW1 open/SW2 closed or SW1 closed/SW2 open

- "transfer locking" off
- "earthing switch" on both channels off
\square MV voltage on the channel in service is absent
\square MV voltage on the other channel is present
\square no fault current.
■ Switching back to the main channel in "AUTO" modes is executed if:
\square the priority channel is open
- the MV voltage on the priority channel is OK for a time period of T2.

The closing order on the back up channel is given after confirming the opening of the channel in service.

Source transfer locking

A digital input prohibits orders from the local control panel, the automatic control systems and the remote control supervisor.
This input is generally connected to the downstream circuit breaker.

Configurable parameters:

- Operating mode
- Automatic return SW1/SW2
- Automation system on/off
- Delay before switching

T1: 100 ms to 60 s in 100 ms steps

- Delay before return

T2: 5 s to 300 s in 1 s steps

- Interlock delay on voltage loss

T3: 100 ms to 3 s in 100 ms steps

- Motorisation type: command time.

Bus tie coupling (BTA 2/3)

The BTA (Bus Tie Automatism) is an automation system for switching sources between two incoming lines (SW1 and SW2) and a busbar coupling switch (SW3). It must be used in conjunction with voltage presence detectors and the fault current detection function on the busbar incoming lines.

Operating mode

Operating mode is selected using Easergy T200 I configuration tool.

Two operating modes can be configured:

- Standard mode:

If the voltage is lost on one busbar, the automation system opens the incoming line (SW1 or SW2) and closes the coupling switch SW3. Coupling is conditional upon the absence of a fault current on the main source.

- Interlock on loss of voltage after switching mode:

After execution of the automation system in standard mode, the voltage presence is checked for a configurable period. If the voltage is lost during this period, the coupling switch SW3 is opened and the automation system interlocked.

Coupling sequence

- Coupling takes place if the following conditions are met:
\square the automation system is switched on
\square the switches on incoming channels SW1 and SW2 are closed
\square the earthing switches SW1, SW2 and SW3 are open
\square there is no voltage on an incoming line SW1 or SW2
\square there is no fault current detection on SW1 and SW2
\square there is no transfer interlock
\square voltage is present on the other incoming line.
- The coupling sequence in standard mode is as follows:
\square opening of the de-energised incoming line switch after a delay T1
- closing of the coupling switch SW3.
- The coupling sequence in "Interlock on loss of voltage after coupling" mode is completed as follows:
\square monitoring of the voltage stability for a delay T3
\square opening of the coupling switch SW3 if this condition is not met
\square locking of BTA automation system.
- The system returns to standard mode after coupling if:
- the "return to SW1 or SW2" option is activated
\square voltage on the channel has been normal for a delay T2
\square the automation system is activated
\square the automation system is not locked
$\square \square$ there is no coupling interlock.

Coupling interlock

A digital input can be used to prohibit the issuing of orders from the local operator panel, the automation system and the remote control supervisor.
This input is generally connected to the downstream circuit breaker.

Locking the automation system

The BTA automation system is locked if one of the following conditions is met during the coupling process:
■ Failure of a command to open or close a switch
■ Indication that an earthing switch has closed

- Appearance of a fault current
- Switch power supply fault
- Appearance of the coupling interlock

■ Manual or remote ON/OFF command from the automation system.

Characteristics of the functional units

Network remote control and monitoring

Continuity of service guaranteed by an overall telecontrol offer

Schneider Electric offers you a complete solution, including:
■ the Easergy T200 I telecontrol interface,

- SM6 switchgear that is adapted for telecontrol,
- the Easergy L500 SCADA system.

L500 network monitoring screen

Existing SCADA

Easergy L500

network: radio, PSTN, GSM/GPRS,

SM6-24 range, more than ready
SM6-24 switchgear is perfectly adapted to the telecontrol context, thanks to options such as:
■ LV control cabinet including T200 I,

- motorized operating mechanism,
- auxiliary fault and position indication contacts,
- current sensors for fault detection.

Easergy L500, a low cost solution to immediately improve your SAIDI*

* SAIDI: system average interruption duration index

Easergy L500 is a SCADA providing all the functions needed to operate the MV network in real time

- Pre-configured with Easergy range products for monitoring and control of MV networks:
- MV/LV substations equipped with T200 I or Flair 200C
- overhead LBS equipped with T200 P
- overhead line equipped with Flite 116/G200

■ Broad range of transmission supports: Radio, GSM, GPRS, PSTN, LL, FO.

Advantages

- Simple implementation:

ㅁ one to two weeks only for $20 \mathrm{MV} / \mathrm{LV}$ units
\square configuration, training and handling within a few days

- Simple and fast evolutions by operations managers
- Short return on investment

■ Service quality and operations rapidly improved.

Characteristics of the functional units

Operating mechanisms

The control devices required for the unit operating mechanisms are centralised on the front panel. The different types of operating mechanism are presented in the table opposite.
Operating speeds do not depend on the operator, except for the CS. For the interlocks, consult the table pages 56 to 57 according to concerned cubicles.

Units	Type of operating mechanism						
	Switch/disconnector					Circuit breaker	
	CIT	Cl1	Cl2	CS	CC	RI	P2
IM, IMB, IMC	\square	\square	\square				
PM	\square						
QM, QMC, QMB		\square	\square				
CM, CM2, CRM				\square			
DM1-A, DM1-D, DM1-S, DM1-Z, DM2, DMVL-A				\square		\square	
DM1-A(*), DM1-W				\square	\square	\square	
DMV-A, DMV-D, DMV-S	\square						\square
NSM-cables, NSM-busbars			\square				
GAM					\square		
SM, TM				\square			
EMB	\square						

Provided as standard
\square Other possibility
(*) 1250 A version

Operating mechanism types	CIT		Cl1		Cl2			CS1	
Unit applications	Load-break switch Fused switch		Load-break switch Fuse switch combination		Load-break switch Fuse switch combination			Disconnector	
Main circuit switch	Closing	Opening	Closing	Opening	Mechanism charging	Closing	Opening	Closing	Opening
Manual operating mode	Hand lever	Hand lever	Hand lever	Push button	Hand lever	Push button	Push button	Hand lever	Hand lever
Electrical operating mode (option)	Motor	Motor	Motor	Coil	Motor	Coil	Coil	N/A	N/A
Speed of operation	1 to 2s	1 to 2 s	4 to 7 s	35 ms	4 to 7 s	55 ms	35 ms	N/A	N/A
Network applications	Remote control network management		Remote control transformer protection		Remote control network management, need of quick reconfiguration (generator source, loop)			N/A	
Earthing switch	Closing	Opening	Closing	Opening	N/A	Closing	Opening	Closing	Opening
Manual operating mode	Hand lever								

Double-function operating mechanism CIT

- Switch function

Independent-operation opening or closing by lever or motor

- Earthing-switch function

Independent-operation opening or closing by lever.
Operating energy is provided by a compressed spring which, when released,
causes the contacts to open or close.

- Auxiliary contacts
- switch (2 O + 2 C) ${ }^{*}$,
\square switch $(2 \mathrm{O}+3 \mathrm{C})$ and earthing switch $(1 \mathrm{O}+1 \mathrm{C})$,
\square switch (1C) and earthing switch (1O+1C) if motor option.
Mechanical indications
Fuses blown in unit PM.
- Motor option
(*) Included with the motor option

Operating mechanisms

Double-function operating mechanism CI1

■ Switch function
\square independent-operation closing by lever or motor.
Operating energy is provided by a compressed spring which, when released, causes the contacts to open to close.
\square independent-operation opening by push-button (O) or trip units.

- Earthing-switch function

Independent-operation closing and opening by lever.
Operating energy is provided by a compressed spring which, when released,
causes the contacts to open or close.

- Auxiliary contacts
- switch (2 O + 2 C) ${ }^{*}$,
\square switch $(2 \mathrm{O}+3 \mathrm{C})$ and earthing switch $(1 \mathrm{O}+1 \mathrm{C})$,
\square switch (1C) and earthing switch (1 O + 1 C) if motor option,
- fuses blown (1 C).
- Mechanical indications

Fuses blown in units QM.

- Opening releases
\square shunt trip,
\square undervoltage for unit QM.
- Motor option
(*) Included with the motor option.

Double-function operating mechanism Cl2

- Switch function
\square independent-operation closing in two steps:
1 - operating mechanism recharging by lever or motor,
2 - stored energy released by push-button (I) or trip unit.
- independent-operation opening by push-button (O) or trip unit.
- Earthing-switch function

Independent-operation closing and opening by lever.
Operating energy is provided by a compressed spring which, when released, causes the contacts to open or close.

- Auxiliary contacts
\square switch $(2 \mathrm{O}+2 \mathrm{C})^{*}$,
\square switch $(2 \mathrm{O}+3 \mathrm{C})$ and earthing switch (1O+1C),
\square switch (1C) and earthing switch (1 O + 1 C) if motor option.
- Opening release shunt trip

■ Closing release shunt trip

- Motor option
(*) Included with the motor option.

Double-function operating mechanism CS

■ Switch and earth switch functions

Dependent-operation opening and closing by lever.

- Auxiliary contacts
\square disconnector (2 O + 2 C) for units DM1-A, DM1-D, DM1-W, DM2
and CRM without VT,
- disconnector $(2 \mathrm{O}+3 \mathrm{C})$ and earthing switch $(1 \mathrm{O}+1 \mathrm{C})$ for units

DM1-A, DM1-D, DM1-W, DM2 and CRM without VT,

- disconnector (1 O + 2 C) for units CM, CM2, TM, DM1-A, DM1-D, DM2
and CRM with VT.
■ Mechanical indications
Fuse blown in units CM, CM2 and TM.

Single-function operating mechanism CC

- Earthing switch function

Independent-operation opening and closing by lever.
Operating energy is provided by a compressed spring which, when released, provokes opening or closing of the contacts.

- Auxiliary contacts

Earthing switch (1 O + 1 C).

Single-function operating mechanism for the SF circuit breaker and Evolis 24 kV lateral

- Circuit-breaker function
\square independent-operation closing in two steps.
First operating mechanism recharge by motor or lever, then release of the stored energy by push-button (I) or trip unit.
\square independent-operation opening by push-button (O) or trip units.
- Auxiliary contacts
\square circuit breaker (4 O + 4 C),
\square mechanism charged (1C).
■ Mechanical indications
Operation counter.
■ Opening releases
- Mitop (low energy),
\square shunt trip,
\square undervoltage.
\square Closing release
\square shunt trip
■ Motor option (option and installation at a later date possible).

Possible combinations between opening releases										
Release type	SF1						SFset			
	Combinations						Combinations			
	1	2	3	4	5	6	1	2	3	4
Mitop (low energy)	\square	\square	\square				\square	\square	\square	
Shunt trip		\square		\square	\square			\square		
Undervoltage			\square		\square	\square				\square

P2 stored energy operating mechanism for the Evolis circuit breaker 17.5 kV frontal

- Circuit-breaker function

\square independent-switching operating closing in two steps.
First operating mechanism recharge by motor or lever, then release of the stored energy by push-button (I) or trip unit.
\square independent-operation opening by push-button (O) or trip units.
\square spring energy release.

- Auxiliary contacts
- circuit breaker (4O+4C),
\square mechanism charged (1 C).
■ Mechanical indications
Operation counter.
■ Opening releases
\square Mitop (low energy),
\square shunt trip,
\square undervoltage.
■ Closing release
\square shunt trip
- Motor option (option and installation at a later date possible).

Characteristics of

 the functional units
Auxiliaries

Motor option and releases for switch-units
The operating mechanisms CIT, Cl1 and CI2 may be motorised.

* Please consult us for other frequencies.

Motor option and releases for SF6 type circuit breakers and Evolis 24 kV lateral

Operating mechanism RI may be equipped with the motor option for the recharging function.

Un		DC					AC (50 Hz)*	
Power supply	(V)	24	48	110	125	220	120	230
Motor option								
	(W)	300						
	(VA)							380
Charging time	(s)	15					15	
Opening releases								
Mitop (low energy)	(W)	3						
Response time	(ms)	30					30	
Shunt trip	(W)	85						
	(VA)							180
Response time	(ms)	45					45	
Undervoltage								
Pick-up	(W)	160						
	(VA)						280	550
Hold	(W)	10						
	(VA)						50	40
Response time	(ms)	55					55	
Closing release								
Shunt trip	(W)	85						
	(VA)							180
Response time	(ms)	65					65	

[^2]Characteristics of the functional units

Auxiliaries

 17.5 kV frontal

Motor option and releases for Evolis circuit breakers

Charging motor and associated mechanism (P2)				
Power supply		48/60	100/130	200/240
	24/30	48/60	100/125	200/250
Threshold	0.85 to			
Consumption (VA or W)	180			
Motor overcurrent	2 to 3 Ir during 0.1 s			
Charging time	6 s max.			
Switching rate	3 cycles per minute max.			
CH contact	10 A 240 V			
Opening release (MITOP low energy)				
Power supply	Direct current			
Threshold	0.6 A $<1<3 \mathrm{~A}$			
Response time to the circuit breaker at Ur	50 ms (protection relay setting)			
Opening release (MX)				
Power supply	24	48	100/130	200/250
	24/30	48/60	100/130	200/250
Threshold	0.7 to 1.1 Ur			
Consumption	Pick-up: 200 (during 200 ms)			
	Hold: 4.5			
Response time to the circuit breaker at Ur	$50 \mathrm{~ms} \pm 10$			
Closing release (XF)				
Power supply	24	48	100/130	200/250
	24/30	48/60	100/130	200/250
Threshold	0.85 to 1.1 Ur			
Consumption	Pick-up: 200 (during 200 ms)			
	Hold: 4.5			

Characteristics of the functional units

Current transformers

Current transformers synthesis in SM6-24 cubicles (by unit)

Units	QMC	CRM	DM1-A	DM1-D	DM1-W	DM2	GBC-A	GBC-B	DMVL-A	DMV-A	DMV-D	IMC	DM1-A	DM1-D	DM1-W	DM1-Z	GBC-A	GBC-B	DMV-A	DMV-D
			630 A										1250A							
CTs																				
ARJP1	\square	\square																		
ARM3			\square																	
ARJP2										\square	\square	\square								
ARJP3													\square							
CLP2				\square	\square															
TLP130			\square																	

Transformer ARJP1/N2F (QMC)

■ characteristics according to IEC standard 60044-1

- single primary winding
- double secondary winding for measurement and protection.

Short-time withstand current Ith (kA)

11 n (A)		10	20	30	50	75	100	150	200
lth (kA)		1.2	2.4	3.6	6	10	10	10	10
t (s)		1							
Measurement and protection	5 A	15 VA - class 0.5							
	5 A	2.5 VA-5P20							

Transformer ARJP1/N2F (CRM)
■ characteristics according to IEC standard 60044-1
■ single primary winding
■ double secondary winding for measurement and protection.
Short-time withstand current Ith (kA)

$1 \mathrm{nn}(\mathrm{A})$	50	100	150	200
$\operatorname{lth}(\mathrm{kA})$	6	10		
$\mathrm{t}(\mathrm{s})$	1			
Measurement and protection	5 A	15 VA - class 0.5		

Note: please consult us for other characteristics.

Transformer ARM3/N2F

■ characteristics according to IEC standard 60044-1

- double primary winding
- single secondary winding for measurement and protection.

Short-time withstand current Ith (kA)

11 n (A)	10/20	20/40	50/100	100/200	200/400	300/600
1 th (kA)	5	12.5	12.5/21*	12.5/25*	12.5/25*	25
t (s)	1	0.8	1			
Measurement and5 A	7.5 VA - class 0.5					
protection $\quad \overline{1 \mathrm{~A}}$	$1 \mathrm{VA}-10 \mathrm{P} 30$					
5 A	$5 \mathrm{VA}-5 \mathrm{P} 10$		$5 \mathrm{VA}-5 \mathrm{P} 15$			

* For 5 A protection

■ characteristics according to IEC standard 60044-1

- double primary winding
- double secondary winding for measurement and protection.

Short-time withstand current Ith (kA)

$11 \mathrm{n}(\mathrm{A})$		50/100	100/200	200/400	300/600
lth (kA)		14.5	25	25	25
t (s)		1			
Measurement and protection	5 A	30 VA - class 0.5			
	5 A	5 VA-5P15	7.5 VA - 5		
	5 A	7.5 VA-5P10	$15 \mathrm{VA}-5$		

Characteristics of the functional units

Current transformers

Transformer ARJP2/N2F

- characteristics according to IEC standard 60044-1
- single primary winding
- double secondary winding for measurement and protection.

Short-time withstand current lth (kA)

$11 \mathrm{n}(\mathrm{A})$		50	100	200	400	600
1th (kA)		25				
t (s)		1				
Measurement and protection	5 A	$\begin{aligned} & 10 \mathrm{VA} \\ & \text { class } 0.5 \end{aligned}$	$\begin{aligned} & \hline 15 \mathrm{VA} \\ & \text { class } 0.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 15 \mathrm{VA} \\ \text { class } 0.5 \end{array}$	$\begin{array}{\|l\|} \hline 15 \mathrm{VA} \\ \text { class } 0.5 \end{array}$	$\begin{array}{\|l\|} \hline 20 \mathrm{VA} \\ \text { class } 0.5 \end{array}$
	5 A	$\begin{aligned} & 2.5 \mathrm{VA} \\ & 5 \mathrm{P} 20 \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{VA} \\ & \text { 5P20 } \end{aligned}$	$\begin{aligned} & 5 \mathrm{VA} \\ & 5 \mathrm{P} 20 \end{aligned}$	$\begin{aligned} & \text { 5VA } \\ & 5 \mathrm{P} 20 \end{aligned}$	$\begin{aligned} & \text { 7.5 VA } \\ & \text { 5P20 } \end{aligned}$

Transformer ARJP3/N2F

- characteristics according to IEC standard 60044-1
- single primary winding
- double secondary winding for measurement and protection.

Short-time withstand current Ith (kA)

$11 \mathrm{n}(\mathrm{A})$		1000	1250
$\mathrm{Ith}(\mathrm{kA})$		25	
$\mathrm{t}(\mathrm{s})$		1	
Measurement and protection	1 A	30 VA - class 0.5	
Measurement and protection	5 A	10 VA -5 P 20	

Low Power Current Transformer (LPCT) CLP2

- characteristics according to IEC standard 60044-8
- large primary current range
- direct output voltage for measurement and protection
- RJ45-8 pts secondary connector
- insulation level 24 kV .

Minimum rated primary current	5 A
Rated nominal primary current	100 A
Rated extended primary current	1250 A
Rated nominal secondary output	22.5 mV
Accuracy class for measurement	0.5
Accuracy class for protection	5 P
Accuracy limit factor	400
Rated short time thermal current	40 kA 1 s
Highest voltage (Um)	24 kV
Rated power-frequency withstand	50 kV

Low Power Current Transformer (LPCT) TLP130

- characteristics according to IEC standard 60044-8
- large primary current range
- direct output voltage for measurement and protection
- RJ45-8 pts secondary connector

■ insulation level 0.72 kV

- internal diameter 130 mm .

Minimum rated primary current	5 A
Rated nominal primary current	100 A
Rated extended primary current	1250 A
Rated nominal secondary output	22.5 mV
Accuracy class for measurement	0.5
Accuracy class for protection	5 P
Accuracy limit factor	250
Rated short time thermal current	25 kA 1 s
Highest voltage $(U m)$	0.72 kV
Rated power-frequency withstand	3 kV

Characteristics of the functional units

Voltage transformers

Voltage transformers synthesis in SM6-24 cubicles (by unit)

Units	CM	DM1-A	DM1-D	DM1-W	DM2	GBC-A	GBC-B	DMVL-A	DMV-A	DMV-D	CM2	TM
VTs												
VRQ2-n/S1	\square											
VRFR-n/S1									■	-		
VRC2/S1						\square	\square				\square	
VRM3-n/S2						\square	\square					
VCT24												■

Transformer VRQ2-n/S1 (phase-to-earth) 50 or 60 Hz
■ characteristics according to IEC standard 60044-2.

Rated voltage (kV)					
Primary voltage (kV)	$10 / \sqrt{3}$	$15 / \sqrt{3}$	$15-20 / \sqrt{3}$	$20 / \sqrt{3}$	
Secondary voltage (V)	$100 / \sqrt{3}$				
Thermal power (VA)	250				
Accuracy class	0.5	30		30	
Rated output for single primary winding (VA)	30	$30-50$			
Rated output for double primary winding (VA)					

Transformer VRFR-n/S1 (phase-to-earth) 50 or 60 Hz
■ characteristics according to IEC standard 60044-2.

Rated voltage (kV)	17.5		
Primary voltage (kV)	$10 / \sqrt{3}$	$15 / \sqrt{3}$	
Secondary voltage (V)	$100 / \sqrt{3}$		
Thermal power (VA)	250		
Accuracy class	0.5		
Rated output for single primary winding (VA)	30		

Transformer VRC2/S1 (phase-to-phase) 50 or 60 Hz
■ characteristics according to IEC standard 60044-2.

Rated voltage (kV)				
Primary voltage (kV)	10	15	20	
Secondary voltage (V)	100			
Thermal power (VA)	500			
Accuracy class	0.5			
Rated output for single primary winding (VA)	50			

Transformer VRM3-n/S2 (phase-to-earth and protected by fuses 0.3 A) 50 or 60 Hz ■ characteristics according to IEC standard 60044-2.

First secondary	Rated voltage (kV)	12	17.5	24
	Primary voltage (kV)	$10 / \sqrt{3}$	$15 / \sqrt{3}$	$20 / \sqrt{3}$
	Secondary voltage (V)	$100 / \sqrt{3}-100 / 3$		
	Thermal power (VA)	200		
	Accuracy class	0.5		
	Rated output for single primary (VA)	$30-50$		
	Thermal power (VA)	100		
	Accuracy class	$3 P$		
	Rated output	50		

Transformer VCT24 (phase-to-phase) 50 or 60 Hz

Rated voltage (kV)				
Primary voltage (kV)	10	15	20	
Secondary voltage (V)	220			
Output (VA)	2500	2500	2500	
		4000	4000	

Note: the above mentioned voltage transformers are grounded neutral.
For other characteristics, please consult us.

Surge arrester

For units IM500, DM1-A, DM1-W, GAM, DMV-A*, DMVL-A

$\ln (\mathrm{A})$ (unit)	$400 / 630$					
Un (kV) (unit)	7.2	10	12	17.5	24	

Note: the rated voltage of the surge arrester is according to unit's rated voltage.
${ }^{(*)}$) limited up to 17.5 kV for DMV-A circuit breaker cubicles.

Characteristics of the functional units

Protection of transformers

Fuse ratings for SM6-24 protection units such as PM, QM, QMB and QMC depend, among other things, on the following criteria:

- service voltage
- transformer rating
- fuse technology (manufacturer)

Different types of fuses with medium loaded striker may be installed:

- Solefuse fuses as per standard UTE NCF 64.210
- Fusarc CF fuses as per IEC recommendation 60.282.1 and DIN dimensions 43.625. For fuse-switch combination unit type QM, QMB, QMC, refer only to the selection table and reference list of fuses. For all other type of fuses, consult us.

Example: for the protection of a 400 kVA transformer at 10 kV , select either Solefuse fuses rated 43 A or Fusarc CF fuses rated 50 A.

Fuse selection table

The color code is linked to the rated voltage of the fuse.
Rating in A - no overload at $-5^{\circ} \mathrm{C}<\mathrm{t}<40^{\circ} \mathrm{C}$.
Please consult us for overloads and operation over $40^{\circ} \mathrm{C}$ for France Transfo oil immersed type transformers.

(1) $=$ SIBA fuses

Characteristics of the functional units

Protection of transformers

Fuses dimensions

Solefuse (UTE standards)

SIBA						
$\stackrel{\varnothing}{\square}$	$\varnothing \quad \varnothing 6$	$\begin{aligned} & \mathrm{Ur} \\ & \text { (kV) } \end{aligned}$	Ir (A)	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \varnothing \\ & (\mathrm{mm}) \end{aligned}$	Weight (kg)
	-	7.2	160	292	85	3.8
	7		200	292	85	5.4
		12	125	292	67	2
			160	292	85	3.8
$\lceil 33\rceil$	23		200	292	85	3.8
		17.5	125	442	85	5.4
		24	100	442	85	5.4
			125	442	85	5.4

The current rating of fuses installed in CRM units depends on:

- motor current rating In
- starting current Id
- frequency of starts.

The fuses rating is calculated such that a current equal to twice the starting current does not blow the fuse within period equal to the starting time.
The adjacent table indicated the ratings which should be used, based on the following assumptions:

- direct on-line startup
- $\mathrm{Id} / \mathrm{ln} \leqslant 6$
- pf $=0.8$ ($\mathrm{P} \leqslant 500 \mathrm{~kW}$) or 0.9 ($\mathrm{P}>500 \mathrm{~kW}$)
- $\eta=0.9$ ($P \leqslant 500 \mathrm{~kW}$) or 0.94 ($\mathrm{P}>500 \mathrm{~kW}$).

The indicated values are for Fusarc fuses (to DIN standard 43-625).

Example:

Consider a 950 kW motor at 5 kV .
$\mathrm{In}=\frac{\mathrm{P}}{\sqrt{3} \cdot \mathrm{U} \cdot \eta \cdot \mathrm{pf}}=130 \mathrm{~A}$
$\mathrm{ld}=6 \mathrm{x} \ln =780 \mathrm{~A}$
Then select the next higher value, i.e. 790 A . For six 5 -second starts per hour, select fuses rated 200 A .

Note: the same motor could not be protected for 12 starts per hour since the maximum service voltage for the required 250 A rated fuses is 3.3 kV .

Selection of fuses

The color code is linked to the rated voltage of the fuse.

Starting current (A)	Starting time (s)						Maximum service voltage (kV)
	5		10		20		
	Number of starts per hour						
		12		12	6	12	
1410	250						
1290		250	250				
1140	250	250	250	250	250		
1030	250	250	250	250	250	250	3.3
890	250	250	250	250	250	250	
790	200	250	250	250	250	250	
710	200	200	200	250	250	250	
640	200	200	200	200	200	250	
610	200	200	200	200	200	200	6.6
540	160	200	200	200	200	200	
480	160	160	160	200	200	200	
440	160	160	160	160	160	200	
310	160	160	160	160	160	160	
280	125	160	160	160	160	160	
250	125	125	125	160	160	160	
240	125	125	125	125	125	160	
230	125	125	125	125	125	125	
210	100	125	125	125	125	125	
180	100	100	100	100	100	125	
170	100	100	100	100	100	100	11

Maximum switchable power (kW)
(direct on-line startup, six 5 sec. starts per hour)

Service voltage (kV)	3.3	4.16	5	5.5	6	6.6	10	11	
Without fuses		1550	1960	2360	2590	2830	3110	4710	5180
With fuses	100 A	140	180	215	240	260	285	435	480
	200 A	625	800	960	1060	1155	1270		
	250 A	1135							

Access to fuses

Access is via the front with the front panel removed.
Fuses may be removed without tools by simply pulling them forward
The field deflector pivots and automatically returns to its position.

Replacement of fuses

When fault clearance results in one or two blown fuses, it is still common practice to replace only the blown fuses.
However, though the remaining fuse(s) may apparently be in good condition, their operating characteristics are generally reduced due to the short-circuit.
If non-blown fuses remain in service, they may blow even at very low overcurrent values.
In systems where continuity of service is of importance, it is recommended to replace all three fuses, in compliance with IEC recommendation 60282.1.
Please note: all three fuses must come from the same range:
Solefuse or Fusarc CF (they have different fusion curves).

Characteristics of the functional units

Switch units

- the switch can be closed only if the earthing switch is open and the access panel is in position.
- the earthing switch can be closed only if the switch is open.
- the access panel for connections can be opened only if the earthing switch is closed.
\square the switch is locked in the open position when the access panel is removed. The earthing switch may be operated for tests.

Circuit-breaker units

\square the disconnector(s) can be closed only if the circuit breaker is open and the front panel is locked (interlock type 50).
\square the earth switch(es) can be closed only if the disconnector(s) is/are open.
■ the access panel for connections can be opened only if:
\square the circuit breaker is locked open,
\square the disconnector(s) is/are open,
\square the earth switch(es) is/are closed.

Note: it is possible to lock the disconnector(s)
in the open position for no-load operations with the circuit breaker.

Functional interlocks

These comply with IEC recommendation 62271-200 and EDF specification HN 64-S-41. In addition to the functional interlocks, each disconnector and switch include:
■ built-in padlocking capacities (padlocks not supplied)

- four knock-outs that may be used for keylocks (supplied on request)
for mechanism locking functions.

Unit interlock

Units	Interlock										
	A1	C1	C4	A3	A4	A5	50	P1	P2	P3	P5
IM, IMB, IMC				\square	\square			■			
PM, QM, QMB, QMC, DM1-A, DM1-D, DM1-W, DM1-Z, DM1-S, DMV-A, DMV-D, DMV-S, DMVL-A	\square	-	\square				\square				
CRM		\square									
NSM				\square				\square			
GAM						\square	\square				\square
SM									-	\square	
DM2							\square				

Key-type interlocks

Outgoing units

Aim:

- to prevent the closing of the earthing switch on a transformer protection unit unless the LV circuit breaker is locked in "open" or "disconnected" position.
to prevent the access to the transformer if the earthing switch for transformer protection has not first been closed.

蛔 A3 type

50 type

Ring units
 Aim:

- to prevent the closing of the earthing switch of a load-side cubicle unless the line-side switch is locked "open".

■ to prevent the simultaneous closing of two switches.

- to prevent the closing of the earthing switch of the casing unit unless the downstream and the upstream switches are locked in the "open" position.

Prevents

■ on-load switching of the disconnectors.

Allows

- off-load operation of the circuit breaker with the disconnectors open (double isolation).
- off-load operation of the circuit breaker with the disconnector open (single isolation).

는 Legend for key-type interlocks:

Characteristics of Interlocks the functional units

to prevent the closing of an earthing switch if the switch of the other unit has not been locked in the "open" position.

■ to prevent on-load operation of the disconnector unless the switch is locked "open" - to prevent the closing of the earthing switches unless the disconnector and the switch are locked "open".

- to prevent on-load operation of the disconnector unless the switch is locked "open" - to prevent the closing of the earthing switches with the unit energised, unless the disconnector and the switch are locked "open"
\square to allow off-load operation of the switch.
- to prevent the closing of the earthing switch of the incoming unit unless the disconnector and the switch is locked "open".

Connections

Connections selection table 76
Cable-connection from below 77

Connections selection table

The ageing resistance of the equipment in an MV/LV substation depends on three key factors:

- the need to make connections correctly

New cold fitted connection technologies offer ease of installation that favours resistance over time. Their design enables operation in polluted environments under severe conditions.

■ the impact of the relative humidity factor

The inclusion of a heating element is essential in climates with high humidity levels and with high temperature differentials.

- ventilation control

The dimension of the grills must be appropriate for the power dissipated in the substation. They must only traverse the transformer area.

Network cables are connected:

■ on the switch terminals

- on the lower fuse holders

- on the circuit breaker's connectors.

The bimetallic cable end terminals are:

- round connection and shank for cables $\leqslant 240 \mathrm{~mm}^{2}$

■ square connection round shank for cables $>240 \mathrm{~mm}^{2}$ only.
Crimping of cable end terminals to cables must be carried out by stamping.
The end connectors are of cold fitted type
Schneider Electric's experience has led it to favour this technology wherever possible for better resistance over time.
The maximum admissible cable cross section:
■ $630 \mathrm{~mm}^{2}$ for 1250 A incomer and feeder cubicles

- $240 \mathrm{~mm}^{2}$ for 400-630 A incomer and feeder cubicles
- $120 \mathrm{~mm}^{2}$ for contactor cubicles
- $95 \mathrm{~mm}^{2}$ for transformer protection cubicles with fuses.

Access to the compartment is interlocked with the closing of the earthing disconnector. The reduced cubicle depth makes it easier to connect all phases.
A $12 \mathrm{~mm} \varnothing \mathrm{pin}$ integrated with the field distributor enables the cable end terminal to be positioned and attached with one hand. Use a torque wrench set to 50 mN .

Dry-type single-core cable

Short inner end, cold fitted

Performance	Cable end terminal type	X-section mm^{2}	Supplier	Number of cables	Comments
$\begin{aligned} & 3 \text { to } 24 \mathrm{kV} \\ & 400 \mathrm{~A}-630 \mathrm{~A} \end{aligned}$	Round connector	50 to $240 \mathrm{~mm}^{2}$	All cold fitted cable end suppliers: Silec, 3M, Pirelli, Raychem, etc.	1 or 2 per phase	For larger x -sections, more cables and other types of cable end terminals, please consult us
$\begin{aligned} & 3 \text { to } 24 \mathrm{kV} \\ & 1250 \mathrm{~A} \end{aligned}$	Round connector	50 to $630 \mathrm{~mm}^{2}$	All cold fitted cable end suppliers: Silec, 3M, Pirelli, Raychem, etc.	$\begin{aligned} & 1 \text { or } 2 \text { per phase } \\ & \leqslant 400 \mathrm{~mm}^{2} \end{aligned}$	For larger x-sections, more cables and other types of cable end terminals, please consult us
	Square connector	$\begin{aligned} & >300 \mathrm{~mm}^{2} \\ & \text { admissible } \end{aligned}$		$400<1 \leqslant 630 \mathrm{~mm}^{2}$ per phase	

Three core, dry cable

Short inner end, cold fitted

Performance	Cable end terminal type	X-section mm^{2}	Supplier	Number of cables	Comments
3 to 24 kV $400 \mathrm{~A}-630 \mathrm{~A}$	Round connector	50 to $240 \mathrm{~mm}^{2}$	All cold fitted cable end suppliers: Silec, 3M, Pirelli, Raychem, etc.	1 per phase	For larger x-sections, more cables and other types of cable
3 to 24 kV 1250 A	Round connector	50 to $630 \mathrm{~mm}^{2}$	All cold fitted cable end suppliers: Silec, 3 M, Pirelli, Raychem, etc.	1 per phase	For larger x-sections, more cables and other types of cable end terminals, please consult us

[^3]

DM1-A, DM1-S, DMVL-A
DM1-W (630 A)

DMV-A (1250 A)

$X=330: 1$ single-core cable
$X=268$: 2 single-core cables
X $=299$: Three core cable

Cabling from below (all units)

- Through trenches: the trench depth P is given in the table opposite for commonly used dry single-core cables type (for tri-core cables consult us).
■ With stands: to reduce P or eliminate trenches altogether by placing the units on 400 mm concrete footings.
- With floor void: the trench depth P is given in the table opposite for commonly used types of cables.

Single-core cables		Units until 630 A					1250 A units		
Cable x-section (mm^{2})	Bending radius (mm)	IM, SM, NSM-cables, NSM-busbars	IMC, DM1-A, DM1-W, GAM, DM1-S, DMVL-A	CRM	DMV-A, DMV-S	PM, QM, QMC(1)	SM, GAM	$\begin{aligned} & \text { DM1-A (2) } \\ & \text { DM1-W(2) } \end{aligned}$	$\mathrm{DMV}_{(3)}^{\mathrm{DM}} \mathrm{~A}$
		Depth P (mm) all orientations							
		P1	P2	P2	P2	P3	P4	P5	P6
50	370	140	400	400	500	350			
70	400	150	430	430	530	350			
95	440	160	470	470	570	350			
120	470	200	500	500	600				
150	500	220	550		650				
185	540	270	670		770				
240	590	330	730		830				
400	800						1000	1350	1450
630	940						1000	1350	1450

(1) Must be installed with a 100 mm depth metal pan.
(2) Must be installed with a 350 mm depth metal pan, in a floor void.
(3) Mounting with a 445 mm depth metal pan compulsory in a floor void.

Note: the unit and the cables requiring the greatest depth must be taken into account when determining the depth P or single-trench installations.
In double-trench installations, depth P must be taken into account for each type of unit and cable orientations.

Cable trench drawings

630 A units

Cable entry or exit
through right or left side

Required dimensions (mm)

Units represented without switchboard side panels

630 A units
Rear entry or exit
with conduits

630 A units
Front entry or exit with conduits

Note 1: for connection with conduits, the bevel (C) must correspond to the following
trench dimensions: $P 1=75 \mathrm{~mm}$ or $P 2 / P 3=150 \mathrm{~mm}$.
Note 2: please refer to chapter "Layout examples" for a site application.

Cabling from above

On each 630 A unit of the range, except those including a low-voltage control cabinet and EMB compartment, the connection is made with dry-type and single-core cables.

Remark : not available for internal arc IEC 62271-200 in busbar compartment.

Cable-connection from below
Trench diagrams and floor void drawings enhanced example

For enhanced internal arc 16 kA 1 s cubicles

Note: to evacuate gases through the bottom, the floor void volume must be over or equal to $2 \mathrm{~m}^{3}$.
Installation
Dimensions and weights 82
Units dimensions 83
Layout examples 85

Installation of 400-630 A units on a 350 mm plinth

Note: in circuit-breaker or contactor units, fixing devices are installed on the side opposite the switchgear

Type of unit	Height (mm)	Width (mm)	Depth (mm)	Weight (kg)
IM, IMB	$1600{ }^{(1)}$	375/500	940	120/130
IMC	1600 (1)	500	940	200
PM, QM, QMB	1600 (1)	375/500	940	130/150
QMC	$1600{ }^{(1)}$	625	940	180
CRM	2050	750	940	390
DM1-A, DM1-D, DM1-W, DM2, DMVL-A	$1600{ }^{(1)}$	750	1220	400
DM1-S	1600 (1)	750	1220	340
DMV-A, DMV-D	$1695{ }^{(1)}$	625	940	340
DMV-S	$1600{ }^{(1)}$	625	940	260
CM	1600 (1)	375	940	190
CM2	$1600{ }^{(1)}$	500	940	210
GBC-A, GBC-B	1600	750	1020	290
NSM-cables, NSM-busbars	2050	750	940	260
GIM	1600	125	840	30
GEM ${ }^{(2)}$	1600	125	920/1060 (2)	30/35 ${ }^{(2)}$
GBM	1600	375	940	120
GAM2	1600	375	940	120
GAM	1600	500	1020	160
SM	$1600{ }^{(1)}$	375/500 ${ }^{(3)}$	940	120/150 (3)
TM	1600	375	940	200
DM1-A, DM1-D, DM1-W, DM1-Z (1250 A)	1600	750	1220	420

Add to height:
(1) 450 mm for low-voltage enclosures for control/monitoring and protection functions. To ensure uniform presentation, all units (except GIM and GEM) may be equipped with low-voltage enclosures.
(2) depending on the busbar configuration in the VM6 unit, two types of extension units may be used:
■ to extend a VM6 DM12 or DM23 unit, use an extension unit with a depth of 1060 mm

- for all other VM6 units, a depth of 920 mm is required.
(3) for the 1250 A unit.

Ground preparation

Units may be installed on ordinary concrete ground, with or without trenches depending on the type and cross-section of cables.

Installation of 630 A unit on a 350 mm plinth ($12.5 \mathrm{kA} / 1 \mathrm{~s}$ internal arc only):
■ enables installation in rooms where trenches are not possible.

Fixing of units

With each other

The units are simply bolted together to form the MV switchboard (bolts supplied).
Busbar connections are made using a torque wrench set to 28 mN .

On the ground

- for switchboards comprising up to three units, the four corners of the switchboard must be secured to the ground with using:
\square M8 bolts (not supplied) screwed into nuts set into the ground using a sealing pistol, \square screw rods grouted into the ground.
- for switchboards comprising more than three units, each unit may be fixed as necessary.
- position of fixing holes b depends on the width a of units:

$\mathbf{a}(\mathrm{mm})$	125	375	500	625	750
$\mathbf{b}(\mathrm{~mm})$	95	345	470	595	720

EMB

DMVL-A, DM1-A, DM1-D, DM1-W, DM1-Z, DM1-S, DM2 630 A

DMV-A 630 A

DM1-A, DM1-W 1250 A

DMV-D

DMV-A 1250 A

DMV-S

Internal arc enhanced cubicles upwards exhaust

Internal arc enhanced cubicles downwards exhaust

Prefabricated substation (Kiosk)

Conventional substation (Masonery)
Internal arc cubicles 12.5 kA 1 s

Switchboard extension example

Internal arc cubicles 16 kA 1 s
Installed against a wall for downwards and upwards exhaust

(*)Advised access dimension

Internal arc cubicles 16 kA 1 s
With rear corridor downwards and upwards exhaust

For upwards exhaust (ceiling height $\geqslant 2800 \mathrm{~mm}$)

Appendices
Trip curves for VIP 300 LL or LH relays 88
Trip curves for VIP 35 relays 89
Fusarc CF fuses 90
Solefuse fuses 91
Modular switchboard Order form 92
SF6 circuit breaker
Order form 98
Vacuum circuit breaker Order form 100

Trip curves for VIP 300 LL or LH relays

Definite time tripping curves

SI curve

El curve

RI curve

Phase protection curve

The trip curve shows the time before the relay acts, to which
must be added 70 ms to obtain
the breaking time.

Appendices

The diagram shows the maximum limited broken current value as a function of the rms current value which could have occured in the absence of a fuse.

Fuse curve 3.6-7.2-12-17.5-24 kV
Time (s)

Limitation curve 3.6-7.2-12-17.5-24 kV
Maximum value of the limited broken current (kA peak)

Fusarc CF fuses

Fuse and limitation curves

Appendices

Solefuse fuses

Fuse and limitation curves

Fuse curve 7.2-12-17.5-24 kV
Time (s)

Limitation curve 7.2-12-17.5-24 kV
Maximum value of the limited broken current (kA peak)
The diagram shows the maximum limited broken current value as a function of the rms current value which could have occured in the absence of a fuse.

Order form

SM6-24
Connection to the network

Only one of the boxes (ticked \mathbf{X} the needed value) have to be considered between each horizontal line.
Blue box \mathbf{X} corresponds to none priced functions.

Options

Replacement of CIT by		Cl1	Cl 2
Electrical driving motorization	24 Vdc	110 Vdc	120/127 Vac (50 Hz)
	32 Vdc	$120-125 \mathrm{Vdc}$	$220 / 230 \mathrm{Vac}(50 \mathrm{~Hz})$
	48 Vdc	137 Vdc	$120 / 127 \mathrm{Vac}(60 \mathrm{~Hz})$
	60 Vdc	220 Vdc	$220 / 230 \mathrm{Vac}(60 \mathrm{~Hz})$

Remote control signalling2 lights	2 lights and 2 PB	2 lights and 2 PB +1 switch
Voltage of the lights (must be the same than electrical driving mechanism)		
24 V	48 V	$5 \mathrm{~V} \square \quad 220 \mathrm{~V}$
Signalling contact	1 C on SW and 10 \& 1 C on ES (not applicable on SM cubicle)	
	onSW $\square 20$	on SW and 10 \& 1 C on ES

Roof configuration (A, B or C only one choice possible)
A - Top incomer (cable maxi $240 \mathrm{~mm}^{2}$ with voltage indicator)

Single core \square	$\square \times$ single core	\square
B - Low voltage control cabinet $(\mathrm{h}=450 \mathrm{~mm})$	With unpunched door	
C - Wiring duct		

Cable connection by the bottom (not applicable on IMB, cable maxi $240 \mathrm{~mm}^{2}$)

Surge arresters for IM $\mathbf{5 0 0}$

7.2 kV	10 kV	12 kV	17.5 kV	24 kV	
Operation counter					
CTs for IMC (quantity)		1	2	3	
Replacement of 630 A upper busbar by 1250 A					
Internal arc version 16 kA 1 s (not possible with "top incomer" option)					
Control and monitoring (48 Vdc electrical motorization compulsory)					
	Cubicle	With relay		out relay	
	Communication protocol	Modbus	IEC	DNP	
	Modem type		RS232	RS485	
	Not for DNP	PSTN	GSM	FSK	
3 core balance current transformers					

Flair fault indicator

21D	21DT	22D	23D	23D zero sequence	
Digital ammeter (not applicable for IMB)					
Visibility of main contacts					
Pressure indicator device					
	Analogic manometer without visibility of main contacts				
	Analogic manometer with visibility of main contacts				
Pressure switch					
Plinth 35	mm (applicable	and IA			

Modular switchboard

Order form

SM6-24

Fuse switch protection

Only one of the boxes (ticked \mathbf{X} or filled \qquad by the needed value) have to be considered between each horizontal line.
Blue box X corresponds to none priced functions.

Remote control signalling (not applicable on PM, QMC and QMB)

2 lights	2 lights and $2 P B$		switch
Voltage of the lights (must be the same than electrical driving mechanism)			
24 V	48 V	110/125 V	220 V
Auxiliary contact signallin		1 C on SW and 10 \& 1 C on ES	
	2O\&2ConSW $\quad 2$	2 O \& 3 C on SW and 10 \& 1 C on ES	
Blown fuse signalling contact (mechanical indication PM, electrical for the other cubicles)			

Roof configuration (A, B or C only one choice possible)

A - Top incomer (cable maxi $240 \mathrm{~mm}^{2}$ with voltage indicator)	
Single core	2 x single core
B - Low voltage control cabinet ($\mathrm{h}=450 \mathrm{~mm}$)	With unpunched door
C - Wiring duct	

Interlocking		Ronis	Profalux
	C4	A1	C1
Heating element			
Operation counter			
Replacement of 630 A upper busbar by 1250 A (not possible for QMB)			
Internal arc version 16 kA 1 s (not possible with "top incomer" option)			
Digital ammeter (not applicable for QMB)			
Visibility of main contacts			
Pressure indicator device			
Analogic manometer without visibility of main contacts			
Analogic manometer with visibility of main contacts			
Pressure switch			

Order form
SM6-24
Circuit breaker protection

Only one of the boxes (ticked \mathbf{X} the needed value) have to be considered betweach horizontal line.
Blue box X corresponds to none priced functions.

Options

Roof configuration (not applicable on DMV-A, DMV-S, DMV-D)
(A, B or C only one choice possible)
A - Top incomer (cable maxi $240 \mathrm{~mm}^{2}$ with voltage indicator)

Modular switchboard

Order form

SM6-24

MV metering

Only one of the boxes (ticked X or filled \square by the needed value) have to be considered between each horizontal line.
Blue box X corresponds to none priced functions.

Modular switchboard

Order form

SM6-24
Casing

Only one of the boxes (ticked \mathbf{X} or filled \qquad by
the needed value) have to be considered between each horizontal line.
Blue box \mathbf{X} corresponds to none priced functions.

Modular switchboard

Order form

SM6-24

Change Over

Only one of the boxes (ticked X or filled \square by the needed value) have to be considered between each horizontal line.
Blue box X corresponds to none priced functions.

SF1 lateral disconnectable or withdrawable
for SM6-24

Only one of the boxes (ticked X the needed value) have to be considered betwen horizontal line.
Blue box X corresponds to none priced functions.

Basic circuit breaker	Quantity \square	
Rated voltage Ur	(kV) \square	
Service voltage	(kV) \square	
Impulse voltage Up	(kVbil) \square	
Short-circuit current Isc	(kA) \square	
Rated current Ir	(A) \square	
Frequency	$50 \mathrm{~Hz} \square$	$60 \mathrm{~Hz} \square$
Mechanism position	Disconnectable	A1 \square

Colour for push buttons and indicators
Push buttons open/close: Red/black
Indicator open/close: Black/white
Operating mechanism charged/discharged: White/yellow

Different releases combinations
Shunt opening releases YO1/YO2
Undervoltage release YM
Mitop

Order form
 SFset lateral disconnectable for SM6-24

Only one of the boxes (ticked \mathbf{X} or filled \square by the needed value) have to be considered between each horizontal line.
Blue box X corresponds to none priced functions.

Basic circuit breaker	Quantity \square
Rated voltage Ur	(kV) \square
Service voltage	(kV) \square
Impulse voltage Up	(kVbil) \square
Short-circuit current Isc	(kA) \square
Rated current Ir	630 A maximum
Frequency	$50 \mathrm{~Hz} \square$
Mechanism position	A1 \square

Colour for push buttons and indicators
Push buttons open/close: Red/black
Indicator open/close: Black/white
Operating mechanism charged/discharged: White/yellow

Control unit and sensors			
VIP 300P (not available for all	CSa 200/1	Is $=10$ to 50 A	Is $=40$ to 200 A
electrical characteristics)	CSb 1250/1	Is $=63$ to 312 A	Is $=250$ to 1250 A
VIP 300LL	CSa 200/1	Is $=10$ to 50 A	Is $=40$ to 200 A
	CSb 1250/1	Is $=63$ to 312 A	Is $=250$ to 1250 A

Circuit breaker options
2nd opening release (see possible choices combination table below)

Different releases combinations			
Mitop	1	1	1
Shunt opening release YO2		1	
Undervoltage release YM			1

Order form

Evolis frontal fixed version for SM6-24
up to 17.5 kV

Only one of the boxes (ticked \mathbf{X} or filled \qquad by
the needed value) have to be considered between each horizontal line.
Blue box X corresponds to none priced functions.

Basic fixed circuit breaker		Quantity
Rated voltage Ur (kV)	$12 \square$	$17.5 \square$
Service voltage		(kV)
Short-circuit current Isc		
Rated normal current Ir (A)	$630 \square$	$1250 \square$
Phase distance		185 mm

Circuit breaker options

Opening release (see possible choices in combination table below)
Shunt opening release MX

100... $130 \mathrm{Vdc} / \mathrm{ac}$ 200... $250 \mathrm{Vdc} / \mathrm{ac}$ -

Low energy release Mitop
1 AC fault signalling SDE and reset 200... 250 Vac are included
Remote control (operation counter already included)
Electrical motor MCH

Shunt closing release XF

Locking of the circuit breaker in the open position
By padlock

Order form
Evolis lateral disconnectable version
for SM6-24 at 24 kV

Only one of the boxes (ticked X or filled \qquad by the needed value) have to be considered between each horizontal line.
Blue box X corresponds to none priced functions.

| Basic circuit breaker | Quantity | |
| :--- | ---: | ---: | ---: |
| Rated voltage Ur | $\mathbf{2 4}$ (kV) | |
| Service voltage | (kV) | |
| Impulse voltage Up | (kVbil) | |
| Rated normal current lr | $\mathbf{6 3 0}$ A maximum | |
| Phase distance | $\mathbf{2 5 0 ~ m m}$ | |
| Mechanism position | B1 | |
| Colour for push buttons and indicators | | |
| Push buttons open/close: Red/black | | |
| Indicator open/close: Black/white | | |
| Operating mechanism charged/discharged: White/yellow | | |

Circuit breaker options
1st opening release (see possible choices combination table below)
Shunt opening release YO1

Remote control (operation counter already included)

Electrical motor M	24... 32 Vdc 48... $60 \mathrm{Vdc} / \mathrm{ac}$	110... $127 \mathrm{Vdc} / \mathrm{ac}$ $220 . . .250 \mathrm{Vdc} / \mathrm{ac}$
Shunt closing release YF		
24 Vdc	110 Vdc	$110 \mathrm{Vac}(50 \mathrm{~Hz})$
48 Vdc	125-127 Vdc	$220-230 \mathrm{Vac}(50 \mathrm{~Hz})$
	220 Vdc	$120 \mathrm{Vac}(60 \mathrm{~Hz})$

Operation counter (already included if remote control supplied)

| Different releases combinations | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Shunt opening releases YO1 | 1 | | 1 | 1 | 1 | | |
| Shunt opening releases YO2 | | 1 | | | | | |
| Undervoltage release YM | | 1 | | 1 | | 1 | |
| Mitop | | | | 1 | 1 | 1 | |

Notes

Notes

Notes

Schneider Electric Industries SAS
89, boulevard Franklin Roosevelt
F-92505 Rueil-Malmaison Cedex
Tel.: +33 (0)1 41298500
www.schneider-electric.com

As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.

This document has been printed

on ecological paper
Publishing: Schneider Electric Industries SAS
Design: Schneider Electric Industries SAS
Printing: Imprimerie du Pont de Claix/JPF - Made in France

[^0]: - cubicle :
 - Sepam series 20 or Statimax relay protection
 \square surge arresters

[^1]: - mechanical indication system
 for blown fuses
 - connection enclosure for cabling from above

[^2]: * Please consult us for other frequencies.

[^3]: Note:

 - The cable end terminals, covered by a field distributor, can be square,
 - PM/QM type cubicle, round end connections $\emptyset 30 \mathrm{~mm}$ max.

